O]
©@@©©

STORAGE

Serial ATA Host Adapter

Software Driver User Manual for Marvell Serial ATA Host Adapters

Doc. No. MV-S800188-00, Rev. A
July 26, 2005
Document Classification: Proprietary Information

MOVING FORWARD

FASTER®

M ARVELL®

2
o
=
<
ol
0
o
=
(=
]
=]
]

(——]
=
——]

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

Document Conventions

| ;I| Note

Provides related information or information of special importance.

Caution

Indicates potential damage to hardware or software, or loss of data.

Warning

Indicates a risk of personal injury.
Document Status

Doc Status: Preliminary Technical Publication: 0.x

For further infromation about Marvell® products, see the Marvell website: http://www.marvell.com

For further information about Marvell® products, see the Marvell website: http://www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any
purpose, without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no
warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of
merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items
contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof
are controlled for national security reasons by the EAR; and,

3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a
plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security
reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all imes hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of
any such information.

Copyright © 2005. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, GalNet, Libertas, Link Street,
NetGX, PHYAdvantage, Prestera, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. AnyVoltage, Discovery, DSP Switcher, Feroceon, GalTis,
Horizon, RADLAN, Raising The Technology Bar, The Technology Within, UniMAC, and VCT are trademarks of Marvell. All other trademarks are the property of their
respective owners.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 2 Document Classification: Proprietary Information July 26, 2005, Preliminary

http://www.marvell.com
http://www.marvell.com

Table of Contents

Section 1. Architectural SpecCificationccciiiiiiiiiiie e 7
00 R [011 {0 To (¥ od o] o I PO PO RS POUPPT PP 7
1.2 CORE DIIVE .ttt ettt e e ekttt e e ek bttt e s e bbbt e e e et bt e e e e aan e e e e e brne s 9
1.3 System-Dependent Header File (MVOS.N).....uiiiiiiiiii e 9
1.4 SCSI to ATA Translation Layer (SAL)eeeieoiiiieeeeiiieee ettt 9
1.5 Common Intermediate Application Layer Tasks (Common IAL).........occcoieiiiiiiiiieiiniiee e 10
1.6 Intermediate Application Layer (IAL)oooiiiiiiiieiiiiie et 10
O Y Y o o] o= (o o W == OO PP PRSP 11
Section 2. System INtegratioN........cccooe i 12
P2 R [011 o To [ox 1o] o I PO PP PUPPPP O 12
2.2 System Integration Using ONly CORE DIIVETcccoiiuuiiiieiiiiiie et 12
2.3 System Integration Using CORE Driver, SCSI to ATA Translation Layer, and Common

Y I T £ PR 20
2.4 System Integration DY EXAMPIEccooiiiiiiiiiii e 21
2.5 MiSCEIIANEOUS ISSUES.....cciiiiiiiiiie ettt e ekt e e e ettt e e e e ettt e e e e annbeee e e enees 23
Section 3. Linux Intermediate Application Layer........ccccccceeeeiiireeeeeiiiiviniinnnn. 29
K A [011 (o To [ox 1o] I PO PP PUP PP 29
3.2 Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support 30
3.3 Building and RUNNING the PrOJECTcoiiiiiiiee e 32
3.4 Linux IAL SCSI Host Template DrvVer APL......coocuiiiiiiiiiii et 36
3.5 LiNUX TAL EXENSION LIDFAIY ..cooiiiiiiiie ittt 36
Section 4. Windows Intermediate Application Layer..........cccccvvvvvvvvvvvnvnnnnnnnnnn. 37
o 1 Vi o T B Tox (o] o OO PP P P PPPPPPTOPPPRP 37
4.2 Building and INSEAIALIONcooiiiiiie et e et e e e e nre e e e e 38
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 3

MARVE ﬁ@ Software Driver User Manual for Marvell Serial ATA Host Adapters

Section 5. Bios Extension Driver Intermediate Application Layer 41
oI A 101 (o To [0 ox 1T o O PO UP O UPPPPPPP 41
5.2 BUIldING aNnd INSLAIALIONcooiiiiiiiieiiie e 42
SECHION 6. COME DIIVEI ..t 44
L% A 1011 (o To [ox 1T o O OO UP TSP PPPPPPP 44
6.2 CORE Driver APl and Data StruCtures SUMMAIYccuueeeiririirieesiiiieeeeesiiieeeeesineeeessneneees 45
6.3 Compile-Time CORE Driver ConfiQUIationoocueeeiiiiiiiiieiiiiiie e 49
6.4 CORE Driver API User Implementation Requirements and ReStrictionscccccceevviineeeenns 51
6.5 Detailed CORE Driver Implemented APl and Data StruCtUrescoovvvciviviiiiiiiieeee e 52
6.6 System-Dependent Header File (MVOS.N)oeiiiiiiiiii s 80
Section 7. SCSIto ATA Translation LAaYeruciiiiiiiiieeeeeeeeeeeeeevnn e 88
4% N 1911 o To [ox 1T o O PO RP U PPPRPPPPN 88
T2 ATCRITECIUIE ...ttt ettt e s e bbbt e e sttt e e e s bbe e e e s annnneeeas 88
7.3 SAL AP SUMMAIY .ooiiiiiiiiiiiiiitt ettt ettt e e e e e s e et e et e e e e e e e s e s n e rreeeaeeeeeennnnns 88
7.4 SAL SCSI CRArACLEIISHICS ..eeeiiuereiieeiitiieiee ittt ste ettt e e sttt e e s s bbb et e e s bbb e e e e s anbbn e e e e s aanneeeas 88
7.5 Internal IMPIEMENTALION.coiiiiiiiii e e et e e bb e e e nannee s 20
7.6 SCSIto ATA Commands Translation Table.........coiiiiiiiiii e 91
7.7 ATA L0 SCSI Error TranSIAtioNccoiiiiiiiiiiiiiiie ettt e e 91
AR S TS Y AN I [1 (=T [= Vi o] o EO PO R PP OPRPPPPP 93
T.9 SAL AP ettt a e e e e e e e e e aeaeeeee et eeata e et eaaeaeaneres 94
Section 8. IAL COMMON LAYEI ..ciiiiiiie et e e e e e e e e 99
S0 A 101 (o To [Tox 1T o O PO UP PP PPPRTPPPP 99
8.2 Common IAL Basic Design and Integration GUIdEliNESoccuvveiiiiiiiiiiiiiiiiiie e 99
8.3 Common IAL Function APl and Data Structures SUMMAIYcceeevririeieeriiiiieeeeniiiee e 100
8.4 Common IAL Internal State DIAgramsSueiieiiiriiieee ittt e s nneeas 103
8.5 Detailed IAL Function APl and Data StrUCIUIEScoiuriiieriiiiiiie st 106
Section 9. ReVISION HISTOMY ..uuuuiiiiii i 115
Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 4 Document Classification: Proprietary Information July 26, 2005, Preliminary

List of Tables

Table 1: SMART Command INPUE BUFFEI.........oiieiieie et e e e e e e e e e e e 31
Table 2: SUPPOIEd SCSI COMMEBNAScouvieiiiiiie ittt et sab e e ssb e e sbanr e e e nanee s 89
Table 3: SCSI to ATA CommaNds TranSIAtIONueiiiiiiiiiii et 91
Table 4: ATA 0 SCSI EITor TraNSIALIONcooiueiiiiiiieeiiie ettt ettt e et sib e e e st e e e e e nebeee s 92
Table 5: S 01U g =T = 10 £ TP PPPPPPIOE
Table 6: ENUMETALOr VAIUES. ettt oottt e ettt e e e e ettt e e e e e eanbe e e e e e aaneeeeeaannbeeaeeaannnes
Table 7: State Table Description

Table 8: REVISION HISTOTY ...ttt e e e st e st e s be s anne e e senneeanbeeenaes
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 5

®

(——]|
=
=

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

List of Figures

Figure 1: Serial ATA Host Adapter Software Driver ArChitECIUIecoooiiiiiiiii i 8
Figure 2: Channel-to-Channel Communication Driver Support in the Core DriVer...........cccovviirieiiniiee e 25
Figure 3: LiNUX AL DFVEr AFCHITECIUIEviiiiie ittt e s e e e e e s et e e e satraae e e e e nanraeeeas 29
Figure 4: BIOS IAL DIIVEr ArCRITECIUIEcciiiieiiiii ettt e e e et e e e e e st e e e e s stba e e e etaaaeaeseaanraeaeas 41
Figure 5: CORE Driver API and Data Structures BIOCK Diagrams.oouureieiiiiiiiieeiiiiecee e 45
Figure 6: Common IAL API and Data Structures BIOCK Diagramcccueiiiiiiiiiiien e 101
Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 6

Document Classification: Proprietary Information July 26, 2005, Preliminary

Architectural Specification
Introduction

Section 1. Architectural Specification

1.1 Introduction

The Serial ATA Host Adapter is a PCI/PCI-X to 4/8 port Serial ATA (SATA) adapter that provides connectivity to
SATA storage devices.

This document describes the software driver architecture of the Serial ATA Host Adapter. This architecture pro-
vides the system integrator (referred to in the driver documentation as the "user") to ramp up a system better and
faster, using the Serial ATA Host Adapter, without the need for thorough knowledge of the adapter itself.

The Serial ATA Host Adapter software driver architecture consists of the following components: (from bottom to
top):

* CORE driver

e System dependent header file (mvOs.h)

e SCSI to ATA translation layer (SAL)

e Common Intermediate Application Layer Tasks (Common IAL)

* Intermediate Application Layer (IAL)

e Application Layers

1.1.1 Relevant Devices

This document is relevant for the following devices:

e 88SX5040, 885X5041, 885X5080, and 885X5081, which are referred to as 88SX50xx.
* 88SX6081 and 88SX6041, which are referred to as 88SX60x1

e 88SX6042 and 885X7042

| §|| Note

The 885X60x1 devices are the third generation of Marvell PCI to SATA host controllers.

Note that the software described in this document uses the enumerator MV_SATA_GEN_II to refer to
these devices.

The 885X6042 and 885X7042 are the fourth generation of Marvell PCI to SATA host controllers.

Note that the software described in this document uses the enumerator MV_SATA_GEN_IIE to refer to
these devices.

1.1.2 Relevant Documents

For further information regarding the Serial ATA Host Adapter, see the following datasheets:

e 88SX5040, 88SX5041, 88SX5080, and 88SX5081 PCI/PCI-X to 8-Port/4-Port Serial ATA Host Controller
(Document Control number MV-S101357-00).

e 88SX6081 and 885X6041 PCI/PCI-X to 8-Port/4-Port Serial-ATA 1l Storage Controllers (Document Control
Number MV-S101495-00).

e 88SX6042 and 88S5X7042 PCI/PCI-X and PCI-E to 4-Port Serial-ATA STorage Controller (Document Control
Number MV-S102305-00).

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 7

M ARVELL®

—
[—]
—

Software Driver User Manual for Marvell Serial ATA Host Adapters

Figure 1. Serial ATA Host Adapter Software Driver Architecture
Application Layers
Intermediate Application Layer
Optional
Layers
______ T
: 77777777777777777 |
| System- Common I I I System- I
| | dependent Intermediate | ! Stcr:aSrIsI(;tIAcI)-Ir—IA I dependent :
| Header File Application Layer | I laver I Header File I |
| + (mvOs.h) tasks | I y . (mvOs.h) | I
I N7 N |
R B R N A N
N S ST
I
: |
I I
System-dependent . r |
: Header File (mvOs.h) CORE driver (OS-independent) I
I
: |
_________________________ _I

Hardware

I Delivered by Marvell I

I Delivered by Customer I

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL

Page 8

Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

Architectural Specification
CORE Driver

1.2 CORE Driver

The CORE driver is operating-system-independent source code that manages all accesses to the hardware that
are needed for a system. The structure of the CORE driver and its APl make possible easy integration of a single
or multiple Serial ATA Host Adapters in a system.

When the CORE driver is compiled with the system-dependent header file (mvOs.h) provided by the user, it gen-
erates code to which the IAL and other layers can connect, using the CORE driver API. It also generates code that
can access the hardware using functions supplied by mvOs.h.

The CORE driver provides the following functionality:

e Serial ATA Host Adapter management, initialization, diagnostics and status reporting.

* Executes UDMA ATA commands.

e Executes non-UDMA ATA commands.

* Manages command completion and events notification, based on call-back functions.

* Interrupt Service.

e Channel to Channel communication (aka Target mode).

| §|| Note

The Serial ATA Host Adapter CORE driver is completely ANSI-C compliant source code.

1.3 System-Dependent Header File (mvOs.h)

The system-dependent single header file is named "mvOs.h".

The purpose of this header file is to provide extensions to the CORE driver and other layers that enable it to
access system resources, lock and unlock resources (by using semaphores) and log events.
The purposes of this file are to:

* Provide an extension to the CORE driver and other layers, for accessing system resources such as memory
and PCI buses.

e Define data types.

* Provide a data structure and function library for the CORE driver, for initializing, locking and unlocking sema-
phores.

* Provide a function that generates a delay in micro-seconds resolution.

* Provide a function for log messages, with a type of log message differentiator.
* Provide a function for printing a formatted string into a buffer.

* Include defines for configuration macros.

1.4 SCSIto ATA Translation Layer (SAL)

The SCSI to ATA Translation Layer is an operating-system-independent layer that provides functionality for trans-
lating SCSI commands to ATA commands.

Such a layer is not mandatory layer. Typically it is used in cases where the IAL connects to a SCSI subsystem and
the requests that are being handled in the IAL scope are SCSI commands. For example, if a SCSI VERIFY com-

mand is forwarded to the IAL, then the command can be forwarded as is to the SAL for translation to an ATA com-
mand, then the SAL forwards this command to the CORE driver for execution using the CORE driver API.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 9

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

The SCSI to ATA translation layer provides the following functionality:

* Translation of certain SCSI commands with immediate completion (without queuing to CORE driver).
* Translation of certain SCSI commands to ATA and then further queuing to CORE driver.

e Error reporting of failing SCSI commands through SCSI sense code.

| §I| Note

The SCSI to ATA translation layer is tested with external tools that cover all cases and options of the
supported SCSI commands.

1.5 Common Intermediate Application Layer Tasks
(Common IAL)

Common IAL Tasks is an operating-system-independent layer. This layer is optional. It provides various function-
ality that are usually required by IALs.

This layer is used with the SCSI to ATA translation layer when the IAL connects to a SCSI subsystem and utilizes
SCSI to ATA translation layer functionality for translating SCSI commands to ATA commands.
The Common IAL Tasks layer provides the following functionality:

* Discovery of storage devices connected to a serial ATA channel using point-to-point based connectivity and
port-multiplier-based connectivity.

e Initialization of storage devices connected to serial ATA channels.
e Parsing of IDENTIFY DEVICE ATA command response buffer.
* Access of TWSI interface on some of the 88SX60x1, 88SX6042, and 88SX7042 devices.

Due to the fact that part of the Common IAL uses a SCSI to ATA translation layer API for performing the discovery
of storage devices, this part can be compiled and linked only when SAL is available.

Note that the SAL does not have this dependency and it can be compiled and linked with the driver with any part
of Common IAL being available.

1.6 Intermediate Application Layer (IAL)

The IAL is user-specific code that functions as an intermediate layer between the higher application layers and the
CORE driver.

Marvell provides three different IALs which, when integrated with the CORE Driver, SAL and Common IAL, pro-
vide a Linux SCSI low-level driver, Windows SCSI mini-port, and a BIOS extension driver.

The IAL definition is according to the system requirements, but what the different IAL implementations have in
common is the way they connect to the CORE driver (and possibly SAL and Common IAL layers), i.e., by using
the CORE driver API and data structures.

Examples of application layers to which the IAL can connect:

* |AL connects to SCSI subsystem: In this case, the function of the IAL connecting to an application-layer-
specific SCSI interface, receiving SCSI commands and forwarding them to the SAL for SCSI to ATA transla-
tion then for further execution using the CORE driver.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 10 Document Classification: Proprietary Information July 26, 2005, Preliminary

Architectural Specification
Application Layers

e |AL connects to ATA subsystem: In this case, the IAL functions as glue software for delivering the ATA
commands received from the ATA subsystem to the CORE driver.

* |AL does not connect to application layers: This case can be used for verification of a single or multiple
Serial ATA Host Adapters in a newly integrated system.
The IAL provides the following functionality:

From the Application layer’s point of view:

* Representation of Serial ATA Host Adapters and their channels and storage devices to the Application layers.
e Proper command and request reception from the Application layers and proper completion of them.

* Proper error propagation of events to the Application layers

From the CORE driver API's point of view:
e Trigger Serial ATA Host Adapter initialization sequences through the CORE driver API.

* Management of Serial ATA Host Adapter SATA channels and the storage devices connected to them, through
the CORE driver API.

* Translation/Delivery/Generation of ATA commands and their delivery to hardware, through the CORE driver
API.

* Proper scheduling of commands and requests to hardware, through the CORE driver API.
e Error handling and reporting, through the CORE driver API call-back functions.
* Calls CORE driver ISR function.

From the SAL API’s point of view:
e Forwarding SCSI commands to SAL for execution by the Serial ATA Host Adapter.

From the Common IAL API's point of view:
* Trigger of storage device discovery and initialization sequences.
e Parsing of IDENTIFY DEVICE ATA buffer response.

1.7 Application Layers

The Application layers are the core of the system. When the IAL APl is used, the Application layers access the

Serial ATA Host Adapter, SATA channels, and storage devices.

Example of Application Layers:

* A specific operating system to whose SCSI sub-system the IAL connects. (IAL is a SCSI low-level driver
under Linux, a SCSI mini-port under Windows, etc.)

* RAID subsystem to which the IAL connects as a translation and command scheduling layer, to perform tasks
on the hardware through the CORE driver.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 11

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

Section 2. System Integration

2.1 Introduction

This section describes methods of integrating the OS-independent components of the Marvell Serial ATA host bus

adapter software layers into a user-specific software driver. It is divided into two main sections:

e System integration using only CORE driver (described in Section 2.2).

e System integration using CORE driver, SCSI to ATA translation layer, and Common IAL layer (described in
Section 2.3).

An example of system integration—Marvell Windows SCSI-port (described in Section 2.4)—is provided. This
example is based on the system integration method described in Section 2.3).

Section 2.5 "Miscellaneous Issues" has miscellaneous issues involving system integration issues.

The OS-independent components discussed in this section are:

e CORE driver: Provides low-level access to hardware with queuing interface and interrupt service routine
(see Section 6. "Core Driver" on page 44).

e SCSlto ATA translation layer: Provides functionality for translating SCSI commands to ATA commands and
queuing capability to hardware using the CORE driver (see Section 7. "SCSI to ATA Translation Layer" on
page 88). This functionality is usually required when IAL connects to SCSI subsystems.

e Common IAL layer: Provides functionality usually required by IALs. The code is written in OS-independent
coding style (see Section 8. "IAL Common Layer" on page 99).

| §I| Note

This document refers to the software layers that control all the OS-independent components as "high”
layers or "higher" layers. These software layers consist of the IAL and additional higher layers.

2.2 System Integration Using Only CORE Driver

This system integration method is suitable for systems that need to access adapters for executing ATA com-
mands. A good example of this is a RAID stack that requests read/write 1/0s. These I/Os can be translated into
ATA read/write commands (UDMA or PIO commands) and queued using the CORE driver. The CORE driver han-
dles all queuing, command completion, and error handling for the request commands.

In this type of system integration the following components/functionality must exist:

* Coding of system-dependent header file (mvOs.h), which enables CORE driver accessing system resources
(described in Section 6.6 "System-Dependent Header File (mvOs.h)" on page 80).

e Hardware detection and CORE driver initialization.
e Storage devices detection and initialization.

e Command queuing, execution and completion.

e Error handling.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 12 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
System Integration Using Only CORE Driver

2.2.1 System-Dependent Header File (mvOs.h)

This file includes macros and possibly function calls that provide the CORE driver with the capability to access
system resources.

This file is user-supplied. For details see Section 6.6 "System-Dependent Header File (mvOs.h)" on page 80.

2.2.2 Hardware Detection, Adapter, and CORE Driver Initialization

Higher layers scan the PCI bus/buses for detection of Serial ATA Host Adapters. For each adapter found the fol-

lowing steps must be performed by higher layers:

1. Initializes the Base Addresses registers (BARs) found in each adapter’s PCI configuration space (BAR).

2. The system integrator must decide if register access to Serial ATA Host Adapter is performed through
I/O-BAR or Memory-BAR (and accordingly define the register access in the mvOs.h file).

3. Enable memory and I/O accesses to adapter and enable adapter’s master capability (bits 0, 1, and 2 in Com-
mand register in PCI configuration space).

4. Allocate and initialize (assign zero to all fields) the MV_SATA_ADAPTER data structure and 4/8
MV_SATA_ CHANNEL data structures (depending on the amount of serial ATA channels the adapter sup-
ports).

5. Allocate 4/8 request and response queues (1 KByte for each request queue and 256 bytes for each response
gueue. If the 128 EDMA entries mode is selected for the 88SX6042/88S5X7042, the request queue size is 4
KByte and the response queue size is 1 KByte). See the Serial ATA Host Adapter datasheets regarding align-
ment restrictions that each request/response queue must have.

| §|| Note

The request and response queues must be cache-coherent. For systems that have hardware cache
coherency assist, the allocation for request and response queues is a simple memory allocation that is
reachable by the adapter from PCI address space. For systems that don’t have cache coherency
hardware assist, allocate request and response queues that have non-cacheable attributes when being
accessed.

6. Setthe MV_SATA_ADAPTER data structure variables:

a) Set the adapterld field for a value unique to that specific Serial ATA Host Adapter. (In debug mode this
field is used by the CORE driver for log messages.)

b) Set the adapter pciConfigDeviceld to the PCI device ID of the adapter, as reported on the adapter’s
PCI configuration space.

c) Set the adapter pciConfigRevisionld to the PCI revision ID of the adapter, as reported on the
adapter’s PCI configuration space.

d) Set the adapter loBaseAddress field to the CPU address that enables access from the CPU to the spe-
cific Serial ATA Host Adapter adapter being initialized. The address can be mapped into either memory-
BAR or
10-BAR.

e) Set intCoalThre and intTimeThre threshold fields to the required values for using the interrupt coa-
lescing mechanism. Setting them both to zero indicates that interrupt coalescing thresholds are set to min-
imum, which achieves the same results as disabling them.

f) Set the mvSataEvetNotify field to point to the user-implemented function used by the CORE driver as a
callback function for event notification.

g) Set the sataChannel pointer to zero.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 13

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

h) Set pciCommand, pciSerrMask and pci InterruptMask to the required values. (See the Serial ATA
Host Adapter datasheet for further information about these fields.)

7. Call the mvSatalnitAdapter () function to start initialization of the adapter.

See Section 6.5.3.1 "CORE Driver Adapter Management" on page 57) for an explanation of the functionality
of mvSatalnitAdapter().

8. Set up the adapter’s interrupt line to trigger a higher layers interrupt service routine wrapper upon interrupt
generation.

9. If the adapter supports staggered spinup, start an OOB sequence by calling either
mvSataEnableStaggeredSpinUp() per serial ATA channel for performing an OOB sequence on the
serial ATA channels one by one, or alternatively call the mvSataEnableStaggeredSpinupAll() function
to perform an OOB sequence of all serial ATA channels in parallel.

10. Call the mvSataUnmaskAdapterInterrupt() function to enable interrupt assertion by the adapter.

2.2.3 Storage Devices Detection and Initialization
After the hardware detection and initialization described above has been completed, there are two possible states
per SATA channel—connected or disconnected.

If a specific SATA channel is not connected, then there is no need for further initialization of the specific SATA
channel.

| §I| Note

To determine whether the SATA channel is connected to/disconnected from a storage device, use the
mvSatalsStorageDeviceConnected()CORE driver function.

If a SATA channel is connected, then higher layers must perform the following algorithms to detect and initialize
the storage device connected to the specific SATA channel:

1. Storage device discovery algorithm: Checks whether the SATA channel is directly connected to a hard drive
or to a port multiplier.

2. Initialization of hard drive algorithm: Reads the hard drive’s IDENTIFY DEVICE data, parses the data, and
accordingly issues SET FEATURES ATA commands.

3. Initialization of port multiplier: This algorithm is a preparation algorithm to perform the "Initialization of hard
drive algorithm" for each hard drive connected to the device SATA ports of the port multiplier.

4. Configuring EDMA mode.

2.2.3.1 Storage Device Discovery Algorithm

This is the first algorithm to be executed when a Serial ATA channel is connected.

1. Fromthe MV_SATA CHANNEL data structures allocated in Section 2.2.2 "Hardware Detection, Adapter, and
CORE Driver Initialization™ initialize the MV_SATA_CHANNEL data structure corresponding to the SATA
channel being initialized as follows:

a) Set corresponding sataChannel pointers in MV_SATA_ADAPTER channel to point to the
MV_SATA_CHANNEL chosen.

b) Set channe INumber to the index number of the SATA channel.

c) Set the requestQueue, requestQueuePciHiAddress, and requestQueuePcilLowAddress fields
to point to the request queue allocated in Section 2.2.2 "Hardware Detection, Adapter, and CORE Driver
Initialization" . The requestQueue parameter is the CPU address to the request queue and

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 14 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
System Integration Using Only CORE Driver

requestQueuePciHiAddress and requestQueuePcilLowAddress are the DMA addresses to the
request queue.

d) Set responseQueue, responseQueuePciHiAddress, and responseQueuePcilLowAddress as per-
formed in the previous step, except for the response queue.

2. Call the mvSataConfigureChannel () CORE driver function.

3. Initiate software reset protocol using the mvStorageDevATAStartSoftResetDevice()CORE driver
function. If the adapter supports port multiplier, then the destination port multiplier port must be port 15 (OxF),
otherwise the destination port must be 0 (default). Note that after software reset protocol has been com-
pleted, the ATA status register equals 0x80, which indicates disk busy.

4. Poll and wait for signature FIS (aka register device to host FIS or FIS 34) to be received. The polling can be
achieved by calling mvStorage IsDeviceBsyBitOff(), which reads the ATA Status register and returns
MV_TRUE if the BSY bit switched from ’1’ to '0’.

5. If the signature FIS received is a port multiplier signature, then perform the algorithm described in Section
2.2.3.2 "Initialization of the Port Multiplier" .

6. If the signature FIS received is a hard drive signature, then perform the algorithm described in Section 2.2.3.3
"Initialization of Hard Drive Algorithm" .

2.2.3.2 Initialization of the Port Multiplier
The algorithm described in this section is intended for port multiplier initialization.

This is a preparation algorithm, which detects the number of SATA channels the port multiplier has, and for each
SATA channel, initializes the hard drive connected to it (if any).

The higher layers must perform the following steps:
1. Query the port multiplier regarding its vendor, features and capabilities. As a result of the query the higher lay-
ers know how many device ports are connected to the port multiplier.

See the mvGetPMDevicelnfo() function in the Common IAL layer (Section 8.5.2.1 "Common IAL Helper

Functions" on page 108) for reference on how to perform the query.

2. For all device ports on the port multiplier, perform the following:

a) Trigger an OOB sequence on the device port of the port multiplier. This can be achieved by calling
mvPMDevEnableStaggeredSpinUp(), or alternatively calling
mvPMDevEnableStaggeredSpinUpAll (), which triggers an OOB sequence on all device ports of the
port multiplier.

b) Read the Status register of the port multiplier’s device port (using the mvPMDevReadReg() CORE driver
function). If a hard drive is connected to the port multiplier’s device port, perform the following steps. Oth-
erwise skip to the next port multiplier’s device port.

— Clear the SError register of the port multiplier’s device port (using the mvPMDevWriteReg() CORE

driver function). This enables the hard drive to send FISes to the adapter’s host port.

— Perform the algorithm described in Section 2.2.3.3 "Initialization of Hard Drive Algorithm" for the specific

port multiplier’s device port.

— Continue initialization of the next hard drives connected to the other port multiplier’s device ports.

2.2.3.3 Initialization of Hard Drive Algorithm

The algorithm described in this section initializes a hard drive.

The algorithm can be executed when the hard drive is either connected directly to the adapter’s SATA channel or
through the port multiplier’s device port.

For the first option, when the hard drive is connected directly to the adapter, perform the algorithm described in
this section, then perform the steps described in Section 2.2.3.4 "Configuring EDMA Mode" .

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 15

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

For the second option, every function call to the CORE driver’s functions must have the port multiplier’s device
port as an input to the function.

The higher layers must perform the following steps:

1. Initiate the software reset protocol using the mvStorageDevATAStartSoftResetDevice() CORE driver
function. If the adapter supports port multiplier, then the destination port multiplier port must be port 15 (OxF),
otherwise the destination port must be 0 (default). Note that after software reset protocol has been com-
pleted, the ATA Status register equals 0x80, which indicates disk busy.

2. Poll and wait for signature FIS to arrive (aka register device to host FIS or FIS 34). The polling can be
achieved by calling mvStorage I sDeviceBsyBitOff(), which reads the ATA Status register and returns
MV_TRUE if the BSY bit switched from "1’ to '0’.

| §I| Note

Steps #1 and #2 above can be automated by calling the mvStorageDevATASoftResetDevice()
CORE driver function, which initiates a software reset protocol and polls until FIS 34 is received. The
problematic issue is that a hard drive may be in its mechanics initialization state, thus it may take a few
seconds until it has been completed. Due to this, the higher layer developer is encouraged to have a timer-
based polling mechanism that as its first step initiates a software reset protocol, but the polling for
reception of FIS 34 can be used with timer based polling methods that releases the CPU for performing
other tasks.

3. Execute the IDENTIFY DEVICE ATA command (using the mvStorageDevATAldentifyDevice() CORE
driver function).

4. Parse the IDENTIFY DEVICE data buffer and accordingly set the hard drive’s parameters such as UDMA
speed, write cache, read ahead, etc.

2.2.3.4 Configuring EDMA Mode

Configure each SATA channel’s EDMA mode using the information collected from the IDENTIFY DEVICE data
buffers (see Section 2.2.3.3 "Initialization of Hard Drive Algorithm").

This can be achieved by calling the mvSataConfigEdmaMode() CORE driver function.

2.2.4 Command Queuing, Execution and Completion

After adapter detection and initialization, when the storage devices detection and initialization phases have been
completed, the adapter and hard drives connected to it are ready for command queuing and execution.

2.2.4.1 Command Queuing and Execution
The command queuing is performed using the mvSataQueueCommand() CORE driver function.

If the command is UDMA read/write then the IAL must provide as input to the mvSataQueueCommand() function,
a PRD table which is a scatter-gather table (see Section 6. "Core Driver").

The UDMA commands are executed solely by the adapter’'s EDMA engine, from the point of view of queuing to
hardware, data transfer, and completion. The PIO commands are performed by the CORE driver.

When the outstanding commands issued to the CORE driver have mixed PIO and UDMA commands, the CORE
driver identifies the command and automatically switches between EDMA enabled mode for UDMA commands
execution, and EDMA disabled mode for PIO commands execution.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 16 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
System Integration Using Only CORE Driver

| §|| Note

Higher layers can optionally call the mvSataNumOfDmaCommands() CORE driver function, which returns
the number of outstanding commands on the specific SATA channel. Using the return value, the higher
layers can be signalled as to whether the SATA channel has empty slots for further command queuing.

2.2.4.2 Command Completion

Command completion is done using a callback function called by the CORE driver, which is a higher layers func-
tion, to indicate completion of a specific command. The completion can have different status indication— success-
ful completion and erroneous completion.

Usually the command completion scheme is triggered by the adapter’s interrupt notifying higher layers of a spe-
cific event. The higher layers call the CORE driver mvSatalnterruptServiceRoutine() function, which
interrogates the adapter and response queues, and upon recognition of completion the CORE driver calls a call-
back function with the statuses.

The callback function is per command and it is defined in the command, when issued to the CORE driver using
the mvSataQueueCommand() function.

The CORE driver supports three types of command completion schemes. At any time a single scheme is valid.

The higher layers are allowed to change the command completion scheme, but when they do scheme switching,
higher layers must make sure that no outstanding commands are queued to the adapter.

Interrupt Driven Driver and Command Completion in ISR
This is the default CORE driver command completion mechanism.

The following scenario is typical for such a scheme:
1. Adapter issues PCI interrupt.

2. Operating system calls higher layers interrupt service routine (this is the ISR routine described in Section
2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization").

3. The higher layers ISR calls the mvSatalnterruptSerivceRoutine() CORE driver function.

4. The mvSatalnterruptServiceRoutine() function interrogates the adapter and response queues, and
accordingly calls a callback function for completion.

Interrupt Driven Driver and Command Completion Deferred in Task
This scheme makes it possible to partition the command completion into two steps.

The first step is masking the adapter’s interrupt and scheduling a task for interrupt servicing. The second step is
the actual interrupt service routine and command completion.

| §|| Note

To enable this scheme, the higher layers must call the mvSataSetInterruptScheme() function after
mvSatalnitAdapter() has been called.

The following scenario is typical for such scheme:

1. Adapter issues PCI interrupt.

2. Operating system calls higher layers interrupt service routine (this is the ISR routine described in Section
2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization").

3. The higher layers ISR calls the mvSataCheckPendingInterrupt() CORE driver function.
If the function returns MV_FALSE, then the interrupt is not the adapter’s.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 17

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

If the return value is MV_TRUE, then higher layers schedules a task in which the actual interrupt handling will
be done.

Note that if the return value is MV_TRUE, then the mvSataCheckPendinglInterrupt() function has
already masked the adapter’s interrupts.

Higher layers ISR exits.

Scheduled task is executed after the higher layers ISR exits.

Task calls the mvSatalnterruptServiceRoutine() CORE driver function.

The mvSatalnterruptServiceRoutine() function interrogates the adapter and response queues and
accordingly calls the callback function for completion.

8. The mvSatalnterruptServiceRoutine() function unmasks the adapter’s interrupts before exiting.

N o ok

Polling Driven Command Completion
This scheme makes it possible to poll for command completion without using the PCI interrupts as a trigger for
command completion.

| ;I | Notes

e To enable this scheme, the higher layers must call the mvSataSetInterruptScheme() function
after mvvSatalnitAdapter () has been called.

* When this scheme is enabled, higher layers must make sure that
mvSataUnmaskAdapterInterrupts()has not been called, or if it has been called previously,
then mvSataMaskAdapterInterrupts() is called before enabling this scheme.

The following scenario is typical for such a scheme:
1. Higher layers queue command(s) using the mvSataQueueCommand() CORE driver function.
2. Higher layers call the mvSatalnterruptServiceRoutine()CORE driver function.

3. The mvSatalnterruptServiceRoutine() function interrogates the adapter and response queues and
accordingly calls the callback function for completion.

| §|| Note

Higher layers must not queue new commands in the context of completion callback functions. Higher
layers must wait until mvSatalnterruptServiceRoutine() exits.Afterwards it is permissible to queue new
commands.

2.2.5 Error Handling

When using the CORE driver, the following hardware and software errors may occur:

* PCl bus error

e SATA bus errors

e Hard drives errors
¢ Command timeout
e Software errors

The following section details how the CORE driver handles such errors, using its API.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 18 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
System Integration Using Only CORE Driver

2.2.5.1 PCIBus Error

When a PCI bus error occurs and it is detected by the adapter, a PCl interrupt is generated (depending on the
pciSerrMask and pci InterruptMask settings defined in Section 2.2.2 "Hardware Detection, Adapter, and
CORE Driver Initialization"). Higher layers must call the mvSatalnterruptServiceRoutine() function as
part of the interrupt service. Upon PCI bus error the mvSatalnterruptServiceRoutine() function calls the
mvSataEventNotify() callback function with corresponding parameters, indicating that a PCI bus error was
detected.

It is recommended that upon detection of a PCI bus error, higher layers abort all outstanding commands, re-initial-
ize the adapter and its storage devices, and then retry the aborted commands.

2.2.5.2 SATA Bus Error

Depending on the adapter, a SATA bus error can be identified using different methods. For example, for a
88SX50XX device, if an UDMA command was completed with the ERR bit equal to '1’ in ATA status, and the ATA
ERROR register equals 0xOC or 0x14, then this means that a SATA bus error occurred in the middle of execution
of a command. (The command is completed via the completion callback function of the specific failed command).

The higher layers can also periodically poll the SError registers on all the adapter’'s SATA channels, to identify
serial ATA bus errors.

It is recommended that upon detection of a serial ATA bus error, all outstanding commands be aborted and retried.

2.2.5.3 Hard Drive Errors

Upon completion of a failed command due to a hard drive error (for example UNC error), the CORE driver calls
the callback function with error indication.

Depending on the type of failure, higher layers must decide which actions should be done next.

2.25.4 Command Timeout

When higher layers issue a command to the CORE driver, it is recommended to allocate a timeout period for each
specific command.

When a command’s timer expires, it is recommended that the higher layers perform the following for the specific
SATA channel on which the command timed out:
1. Callthe mvSataDisableChannelIDma()function.
This disables the queuing mechanism.
2. Call mvSataFlushDmaQueue().
This triggers the CORE driver to empty its queue. When each entry is emptied, the CORE driver calls the rel-
evant callback function with abort indication.
3. CallmvSataChannelHardReset().
This resets the adapter’s specific serial ATA bridge and re-issues an OOB sequence.
4. Trigger the Storage Devices Detection and Initialization algorithm for re-initialization of the SATA channel.
(See Section 2.2.3 "Storage Devices Detection and Initialization" .)
5. After re-initialization has been completed, retry the abort commands.

2.255 Software Errors

The CORE driver has many sanity checks with regards to the parameters that are passed to the CORE driver
functions. It is recommended that in the initial stages of system integration, all CORE driver logging messages be
enabled. At more advanced stages the CORE driver provides the ability to filter only the error messages and dis-
able all logging messages in the production driver, since they increase the CORE driver’s footprint and decreases
its performance.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 19

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

2.3 System Integration Using CORE Driver, SCSI to ATA
Translation Layer, and Common IAL Layers

This system integration method is typical for systems that have SCSI subsystems that initiate SCSI commands.

The CORE, SAL, and Common IAL layers can be integrated with the user’s IAL, thus providing an interface for
executing SCSI commands as if the SATA hard drives were SCSI targets.
This is done by different functionality provided by the different layers:

* SAL provides the functionality of translating SCSI commands into ATA commands and an interface for queu-
ing to the CORE driver.

* CORE driver provides hardware access and ATA command queuing.
e Common IAL provides the functionality for initializing SATA hard drives.

This type of system integration has the following components and tasks that must be fulfilled:-

e Coding of a system-dependent header file (mvOs.h) that enables the CORE driver accessing system
resources (described in Section 6.6 "System-Dependent Header File (mvOs.h)" on page 80).

* Hardware detection; initialization of adapter, CORE, SAL, and Common IAL drivers.
e Command queuing, execution, and completion.
e Error handling.

2.3.1 System-Dependent Header File (mvOs.h)

See Section 2.2.1 "System-Dependent Header File (mvOs.h)"

2.3.2 Hardware Detection; Initialization of Adapter, CORE, SAL,
and Common IAL Drivers

See Section 2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization" up to and including calling the
mvSatalnitAdapter() CORE driver function.

Afterwards, higher layers must perform the following steps:

1. Callthe mvSataScsi InitAdapterExt()SAL function to initialize the SAL layer.

2. Set up the adapter’s interrupt line to trigger a higher layers interrupt service routine wrapper upon interrupt
generation.

3. Call the mvAdapterStartinitialization() Common IAL function, which starts the initialization pro-
cess of storage devices connected to the adapter’s SATA channel.

4. Setup the timer function that is called every 0.5 seconds (or any other configurable variable in Common IAL).
The timer function must call the mvIALTimerCal Iback() Common IAL function.

2.3.3 Command Queuing, Execution, and Completion

This section describes how SCSI commands are queued, executed, and completed.

2.3.3.1 Command Queuing and Execution

When the IAL receives a SCSI command, the IAL checks if it is a SCSI read/write command. If this is the case,
then the IAL must build a PRD table for the SCSI command.

If the SCSI command is read/write or any other SCSI command, the IAL calls the mvExecuteScsiCommand()
function, which handles all translation from SCSI commands to ATA commands, and queuing to the CORE driver.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 20 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
System Integration by Example

2.3.3.2 Command Completion
When using the SAL, there are several types of command completion:

¢ Immediate command completion. In the mvExecuteScsiCommand() function, the SAL calls the callback
function. This is indicated by the return value MV_SCSI_COMMAND_STATUS_COMPLETED from
mvExecuteScsiCommand().

e Command queued to CORE driver. This is indicated by the return value
MV_SCSI_COMMAND_STATUS_QUEUED from mvExecuteScsiCommand().

* Failure of command execution. Usually this is because the SAL does not support the command being
queued. This is indicated by the value MV_SCSI_COMMAND_STATUS_FAILED from
mvExecuteScsiCommand().

* Queuing in initialization stages. This is usually command queuing due to SATA drives being initialized. When
SATA drives initialization has been completed for a specific SATA channel, all SCSI commands that were pre-
viously queued with the MV_SCSI_COMMAND_STATUS_QUEUED_BY_IAL return value will be aborted and
re-queued by the SCSI subsystem.

The command completion status returned by the SAL is a SCSI-like status. Users must map the completion sta-
tuses to their specific SCSI subsystem completion statuses.

2.3.4 Error Handling

When using the CORE driver, SAL, and Common IAL, the following hardware and software errors may occur.
e PCU bus error

e SATA bus error or hard drives errors

e Command timeout

e Software errors

2.3.4.1 PCIBus Error
See Section 2.2.5.1 "PCI Bus Error"

2.3.4.2 SATA Bus Error or Hard Drives Errors

These errors are reported to the SAL.
When such errors occur, the SAL translates the error codes to SCSI-like error codes.

Depending on the type of the failure, higher layers must decide on the next actions to be done.

2.3.4.3 Command Timeout

See Section 2.3.4.3 "Command Timeout" . Instead of triggering the Storage Devices Detection and Initialization
algorithm, (Section 2.2.3) call the mvRestartChannel () Common IAL function, which performs all the storage
devices re-initialization.

2.3.4.4 Software Errors
See Section 2.2.5.5 "Software Errors" .

2.4 System Integration by Example

This section provides an example of system integration using the methods described in Section 2.3 "System Inte-
gration Using CORE Driver, SCSI to ATA Translation Layer, and Common IAL Layers" .

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 21

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

The example is the Marvell Windows SCSI mini-port driver for the Serial ATA Host Adapters.

2.4.1 Hardware Detection

The Windows kernel performs hardware detection in the following manner:

1. Windows calls DriverEntry() function.

2. DriverEntry enables auto-flush mechanism (see Section 6. "Core Driver" for further information about auto-
flush).

3. DriverEntry initializes a template hwinitializationData data structure that contains all function pointers for
hardware initialization, command execution, and interrupt service routine.

4. DriverEntry calls the ScsiPortlnitialize() SCSI Port function, each time defining a new PCI device ID
from the Serial ATA Host Adapters device list. According to this method, DriverEntry requests that the SCSI
Port scan the PCI buses for adapters that have the relevant vendor ID and device ID, and accordingly calls
mvFindAdapter().

2.4.2 Hardware Initialization

For each adapter found by the SCSI port driver (as requested by DriverEntry using the ScsiPortlnitialize()

function), the SCSI port driver calls the mvFindAdapter () function, which performs the following:

1. Initializes the HwDeviceExtension parameters (see Windows DDK).

2. Gets PCI BAR 0 mapping through ScsiPortValidateRange and ScsiPortGetDeviceBase. Note that the Win-

dows kernel has already enabled memory and I/O access to the adapter and has also enabled the adapter’s

capability to be a PCI master.

Reads adapter’s PCI device ID and revision ID.

Allocates request and response queues.

5. Initializes the MV_SATA_ADAPTER data structure (which is part of HwDeviceExtension as previously
requested by DriverEntry).

6. Calls the mvSatalnitAdapter () function.

7. Calls the mvSataScsi InitAdapterExt() function with a pointer to MV_SAL_ADAPTER_EXTENSION,
which is also part of HwDeviceExtension, as previously requested by DriverEntry.

P w

2.4.3 Storage Devices Initialization

The SCSI port calls the mvHwInitial ize() function, which triggers storage devices initialization by calling the
mvAdapterStartinitialization() Common IAL function.

2.4.4 Command Queuing and Execution

The SCSI port calls mvStart10() for executing SCSI commands (and other tasks).
If the request was 1/0-Control, the IAL handles this request.

If the request was executing SCSI command, the IAL checks if the command is a Read or Write SCSI com-
mand, in which case the IAL must build a PRD table.

Afterwards, the IAL issues a command to the SAL via the mvExecuteScsiCommand() SAL function.

The IAL checks the return value of mvExecuteScsiCommand() and accordingly decides wether to call
ScsiPortNotification() with NextRequest or NextLuRequest.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 22 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
Miscellaneous Issues

2.4.5 Interrupt Servicing and Command Completion

Upon PCI interrupt from the adapter (or from another adapter sharing the same PCI IRQ), the SCSI port calls the
mvInterrupt() function, and mvinterrupt()calls mvSatalnterruptServiceRoutine() for interrupt
processing.

Within mvSatalnterruptServiceRoutine() the command completion callback is called for completing the
SCSI commands.

After mvSatalnterruptServiceRoutine() has been completed and has returned MV_TRUE (indicating that
the interrupt was generated by the adapter), mvinterrupt() calls the mvSataScsiPostIntService() SAL
function.

For every SCSI command completed, the IALCompletion() IAL function is called. (This is defined as a callback
function for every SCSI command issued to the SAL.

The IALCompletion() function maps the corresponding SAL completion status to SCSI port driver-specific sta-
tus codes.

2.4.6 Bus Reset Upon Timeout

Upon timeout caused by a non-completed SCSI command (previously issued by the SCSI port driver) the
mvResetBus() IAL function is called.

The function performs the following:

1. Calls the mvSataDisableChannelDma() CORE driver function to disable queuing.

2. Calls the mvSataFlushDmaQueue() CORE driver function. As a result, all callback functions for the out-
standing commands are called with abort indication.

3. Calls the mvSataChannelHardReset() CORE driver function, to reset the SATA bridge and restart an
OOB sequence.

4. Calls the mvRestartChannel () Common IAL function, to restart storage device re-initialization.

2.5 Miscellaneous Issues

2.5.1 Hotplug on SATA Channels

Upon hotplug event on SATA channel (either connected directly to the adapter or indirectly, through the port multi-
plier) the user-implemented mvSataEventNoti fy() function is called with the corresponding event.
The event indication can be one of the following:
e SATA channel connect event on Serial ATA Host Adapter
(indicated by MV_SATA_CABLE_EVENT_CONNECT).
e SATA channel disconnect event on Serial ATA Host Adapter
(indicated by MV_SATA_CABLE_EVENT_DISCONNECT)
* SATA channel connect or disconnect on port multiplier’s device side SATA channels Serial ATA Host Adapter
(indicated by MV_SATA_CABLE_EVENT_PM_HOT_PLUG).

The hotplug event on the SATA channel connected directly to the adapter is easier to handle than the indirectly
connected channel (through port multiplier) for the following reasons:

* When the port multiplier sends SDB FIS with the 'N’ bit indicating a hotplug event on the port multiplier, there
is no indication whether a device SATA channel was connected or disconnected, or on which device side

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 23

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

SATA channel it occurred. On the other hand, when the hard drive is directly connected to the adapter, the
previous events are reported by the adapter.

e When the hard drive is disconnected from the port multiplier while it is in the middle of a transaction (either
due to PIO command or UDMA command), the command will not be completed. If the hard drive is directly
connected and a disconnect event occurs, then the software driver can simply abort the transactions.

Due to the above reasons, it is recommended that upon receipt of a hotplug event on the port multiplier’s device
port, the software drive immediately aborts all outstanding commands and starts storage device re-initialization on
the specific SATA channel.

Thus at the end of the re-initialization process, the software can determine the reason for the hot plug event and
on which device channel it occurred.

2.5.2 Logger Module for Debug Messages Logging

The Logger module is a generic debug messages logging mechanism. It is used by the CORE driver, SAL, and
Common IAL independently of one another.

It is recommended that the IAL also register its debug messages in this logging mechanism.

The Logger module produces output messages for debugging, monitoring, and tracking the activity of the SATA
adapter driver modules. It uses module identifiers with the required logging level to monitor driver activity. The log-
ging level for each module determines the type of messages being printed for the module. Every driver module
may be registered independently to the logger, with the desired logging level.

When the logging filter associated with the module matches the level of the current log message, the logger keeps
the module name and log filter. It only prints the messages from registered modules.

The message output format is "<Module name> (<Debug Level>) <Message body>", i.e.

"Core Driver (DEBUG) Issue SRST command"

| §I| Note

The Logger module is implemented as part of the CORE driver. See Section 6. "Core Driver" on page 44
for further information on the API of the Logger module.

2.5.3 Channel-to-Channel Communication (aka Target Mode)

The 88SX60x1 adapter supports a channel-to-channel communication feature (aka Target mode).

In this mode, the Serial-ATA |l ports are used for communication between two 88SX60x1 adapters. The communi-
cation channels are not symmetric—one side is configured as an initiator while the other side is configured as a
target.

The communication is carried out based on sending either a message or a block of data (via DMA). An IAL call-
back function called by the CORE driver as part of the its interrupt service routine indicates that a message was
received and/or the SATA channel's DMA has been completed.

sFigure 2 describes the channel-to-channel communication driver support in the CORE driver.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 24 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
Miscellaneous Issues

Figure 2: Channel-to-Channel Communication Driver Support in the Core Driver

Initiator host target host
1. mvSataC2CActivateBmDma 2. mvSataC2CSendRegisterDeviceToHostFIS 1. mvSataC2CSendRegisterDeviceToHostFIS | | 2. mvSataC2CActivateBmDma
J l - J_ _
| ______ .I | —————— | activateBMDmaMode |
. Send Vendor Unique FIS 34h 7 T
| activateBMDmaMode | | (Register Device to Host) | ______ 1 | read L wite l
. | Send Vendor Unique FIS 34h ; i i

______ — - — ‘l'— | (Register Device to Host) | _L
| . P

Send Vendor Unique FIS
| 39h(DMA Activate)

-

interrupt

interrupt)
interrupt

C2Ccallback (IAL) ‘Qi‘ai

> % C2Ccallback (JAL)

interrupt
Legend:
— — — — internal function
API function
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 25

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

2.5.3.1 Channel-to-Channel Communication: Initialization
The channel-to-channel feature is initialized by calling the mvSataC2CInit() CORE driver function.

The IAL calls the function with MV_SATA_C2C_MODE_INITIATOR for the adapter with the initiator SATA channel
and MV_SATA_C2C_MODE_TARGET for the adapter with the target SATA channel.

When calling the mvSataC2CInit() CORE driver function, the call-back function must be valid for both the initi-
ator and the target.

For disabling the channel-to-channel communication feature the IAL can call the mvSataC2CStop() CORE
driver function.

2.5.3.2 Channel-to-Channel Communication: Sending a Message
Both initiator and target can send a message with a size of 10 bytes.

The hardware sends this messages using FIS 34 SATA FIS.
For sending a message the IAL calls the mvSataC2CSendRegisterDeviceToHostFIS() Core driver function.

The receiving SATA channel issues an interrupt and the CORE driver calls the defined call-back function as part of
the interrupt handling.

2.5.3.3 Channel-to-Channel Communication: Transferring Blocks
The IAL can initiate a block transfer using DMA transfer SATA protocol between the initiator and target SATA

channels. The DMA transfer direction can be either from/to the target SATA channel, but the DMA initiation can be
triggered only by the initiator SATA channel.

The algorithm is as follows:

1. Initiator’s IAL calls themvSataC2CActivateBmDma() CORE driver function for the initiator SATA channel.
This initializes the initiator's DMA and waits for DMA Setup FIS from target SATA channel.

2. Initiator’s IAL calls the mvSataC2CSendRegisterDeviceToHostFIS() Core driver function to send a
message to the target channel. The content of the message depends on the IAL's implementation. It is rec-
ommended that message be unique, so that the driver handling the target SATA channel can recognize it and
accordingly set the target's DMA.

3. Software driver that handles the target SATA channel (target’s IAL) receives a unique message (triggered by
the CORE driver calling the defined call-back function as part of the interrupt handling).

4. Target's IAL calls the mvSataC2CActivateBmDma() CORE driver function for the target SATA channel.
The CORE driver sets up the target's SATA channel DMA and sends DMA ACTIVATE FIS to the initiator.

5. Initiator and target SATA channels perform DMA transfer. When the DMA transfer has been completed, both
the initiator’s and target’s IALs receive a call-back function call from the CORE driver indicating the comple-
tion.

6. Both the initiator's and target's IALs call the mvSataC2CResetBmDma() CORE driver after receiving the
DMA transfer completion indication.

2.5.3.4 Channel-to-Channel Communication: Error Handling

Message Error Handling

When sending a message via the mvSataC2CSendRegisterDeviceToHostFIS() Core driver function, if any
error occurs, then the function returns MV_FALSE.

The errors can be either parameter errors, initialization errors, or FIS transmission errors.

In the case of a FIS transmission error, the IAL can retry the FIS transmission by calling the
mvSataC2CSendRegisterDeviceToHostFIS()CORE driver function.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 26 Document Classification: Proprietary Information July 26, 2005, Preliminary

System Integration
Miscellaneous Issues

Block Transfer Error Handling
Upon recognition of a block transfer error, an interrupt is issued for either the initiator or the target. As part of the
CORE driver’s interrupt service routine, the IALs call-back function is called with the proper error indication.

2.5.4 1/O-Granularity

The interrupt coalescing in I/0O Granularity enables command completion interrupts to be coupled into a single
interrupt. This feature can be used in RAID applications. In such applications a single RAID transaction is divided
into EDMA transactions to multiple drives and the completion interrupt can be generated as a single interrupt for
the entire RAID transaction.

Interrupt Coalescing in I/O Granularity Design Highlights
* Forevery I/O transaction, the related I/O transaction counter is updated with the number of SATA commands
related to this I/O transaction.

* The 88SX60x1 adapter issues a maskable interrupt, when the number of SATA commands executed with a
specific I/O transaction number equals the number of SATA commands related to that specific I/O transaction
number.

* The I/O Granularity driver support is capable of switching between two modes of operations—with and with-
out interrupt coalescing in 1/O granularity per SATA adapter.

* When interrupt coalescing in I/O granularity is enabled for the controller, all EDMA transactions for this
adapter are executed with an interrupt coalescing I/O granularity interrupt scheme.

2.5.4.1 Enabling I/O-Granularity CORE Driver Support

To enable 1/O-Granularity CORE driver support, the IAL must call the mvSataEnableloGranularity() CORE
driver function after mvSatalnitAdapter() has been called.

2.5.4.2 1/O-Granularity Command Queuing

The following steps describe the modifications needed to be done for queuing a command when the 1/0O-Granular-

ity feature is enabled.

1. For the first command in the chain of commands to be queued with I/O-Granularity, the IAL must set the iog-
CommandType to MV_IOG_COMMAND_TYPE_FIRST and then set the total number of commands in the
transCount field.

2. Call the mvSataQueueCommand()function. Upon exit the CORE driver sets iogCurrentTransld. This is
a unique code for the chain of command.

3. IAL saves the iogCurrentTransld returned by CORE driver. This field must be used for the next commands in
the chain.

4. For the other commands in the chain of commands, the IAL must set the iogCommandType to
MV_IOG_COMMAND_TYPE_NEXT and then set the transld to the saved value that was previously returned
by CORE driver.

2.5.4.3 1/0O-Granularity Command Completion

The command completion is the same as that described in.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 27

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

2.5.4.4 1/0-Granularity Error Handling

When the 1/0-Granularity feature is enabled, error handling is the same as that described in Section 2.2.5 "Error
Handling" with the following addition:

When any error occurs, the I/O-Granularity feature is automatically disabled by the CORE driver, to enable the IAL
to perform error handling and recovery.

When the IAL has completed error handling and recovery, it must re-enable 1/0O-Granularity feature support by
calling the mvSataEnableloGranularity() CORE driver function.

| §I| Note

See Section 6. "Core Driver" for further information about the 1/0O-Granularity functions API.

2.5.5 Restrictions when Using the CORE Driver API

When using the CORE driver API, the following restrictions apply:

* When allocating a request queue, the PCI address should be 1 KByte aligned.

* When allocating a response queue the PCI address should be 256 bytes aligned.

* The request queue and response queue should be cache coherent or in non-cacheable memory regions.

* When the IAL builds a PRD table, each entry must not cross the 4 GByte addressing boundary (for further
details, see the Serial ATA Host Adapter datasheet).

* When the IAL calls mvSataShutdownAdapter () for deactivating a specific SATA channel, it must make
sure that no other task is using the CORE driver API.

* Depending on operating system implementation, the IAL must gracefully remove (or delete) the semaphore
from the relevant MV_SATA_CHANNEL data structure after calling mvSataRemoveChannel ().

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 28 Document Classification: Proprietary Information July 26, 2005, Preliminary

Linux Intermediate Application Layer
Introduction

Section 3. Linux Intermediate Application Layer

3.1 Introduction

The Serial ATA Host Adapter Linux Intermediate Application Layer (IAL) is a software layer positioned under the
Linux SCSI subsystem and above the CORE driver, SAL, and Common IAL.

The Linux IAL implements a Linux SCSI host template (Linux SCSI sub-system low level driver interface) that
receives SCSI-3 commands and forwards them to the SAL for SCSI command translation to ATA, and later for
queuing to hardware through the CORE driver API.

The Linux IAL consists of the following parts:

e Linux IAL SCSI Host Template Driver

e Linux IAL Extension Library

Figure 3: Linux IAL Driver Architecture

SCSI Subsystem (SCSI mid-layer)

mv_sata.o driver

Linux Intermediate Application Layer

| |
| |
| |
I |
| |
| |
| |
| |
I |
| |
| |
!] System 7 Common ‘ } o Systém } :
; oystem- i : 3 -

: | dependent Intermediate <::> St(r:;lstlgtﬁ)TnA | dependent | I
I i Header File Application Layer | | layer | Header File | |
I i (mvOs.h) tasks | | i (mvOs.h) | |
| ‘ ‘ - \) a '
|

| |
|

S SN . |
| ' | |
| : | |
System-dependent . . | |

: | Header File (mvOs.h) CORE driver (OS-independent) | |
| ' | |
| ' | |
I L ________ _ |
I |
S _

Hardware
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 29

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

3.1.1 Linux IAL SCSI Host Template Driver

The Linux IAL Host Template driver is the part of the Linux IAL that enables connectivity to the Linux SCSI sub-
system. It presents the Serial ATA Host Adapter as a SCSI host adapter, by implementing a SCSI host template.
The Linux IAL Host Template driver implements the following functionality:

* Registers a SCSI host adapter for each SATA channel to the Linux SCSI subsystem using a Linux SCSI host
template data structure.

e Triggers the Serial ATA Host Adapter initialization sequence.

e Triggers a storage devices initialization process using the Common IAL API. These storage devices are con-
nected to the Serial ATA Host Adapter SATA channels.

3.1.2 Linux IAL Extension Library

The Linux IAL Extension Library provides the Linux IAL SCSI Host Template driver with the ability to perform a set
of tasks.

The Extension Library is not implemented from within the SCSI Host Template driver. This is because the Exten-
sion Library is more Serial ATA Host Adapter-hardware-oriented than the SCSI Host Template Driver, which
makes it easier for the user to differentiate between Linux-oriented source code and hardware-oriented source
code.

The Linux IAL Extension Library implements the following functionality:

* PRD table generation from SCSI scatter-gather buffers list.

e Sanity checking of vital Serial ATA Host Adapter configuration.

e SCSI commands completion notification, based on call-back function from the SCSI subsystem.

* Triggering of Common IAL storage device initialization sequence upon hot-plug event.

e CORE driver Interrupt Service Routine (ISR) Wrapper.

3.2 Linux IAL SMART (Self-Monitoring, Analysis, and
Reporting Technology) Support

The Linux IAL supports SMART commands. The commands are standard SMART commands, but the interface is
a Marvell proprietary interface through the SCSI_IOCTL_SEND_COMMAND interface.

The structure of the SCSI command delivered via SCSI_IOCTL_SEND_COMMAND is a 6-byte command that is
followed by the buffer containing the ATA register values. The driver uses the same buffer for input and output,
thus the minimum buffer allocated by application must be 520 bytes (8 bytes for ATA registers + 512 bytes for the
whole sector returned by some of SMART commands).

For an explanation of ATA register values, see the ATA/ATAPI-6 specification.

Marvell has ported a general Linux utility called SMARTMONTOOLS. This utility generally interfaces to ATA hard
drives via /dev/hdX block devices.

To communicate with the driver, the ported utility uses the SCSI_IOCTL_SEND_COMMAND IO control function
with the vendor-specific command code OxC as a transport for the SMART commands.

For an explanation of the SMARTMONTOOLS package, see the Readme file and the SMARTMONTOOLS user
manual.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 30 Document Classification: Proprietary Information July 26, 2005, Preliminary

Linux Intermediate Application Layer

Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support

The following commands are supported by the Linux IAL as part of the support for SMART:
IDENTIFY - ATA IDENTIFY (not a SMART command)

ENABLE SMART

DISABLE SMART

ENABLE DISABLE AUTOSAVE
EXECUTE OFFLINE DIAGS
RETURN STATUS

READ SMART THRESHOLDS
ENABLE DISABLE AUTO OFFLINE
READ SMART LOG

Table 1: SMART Command Input Buffer

Buffer Value Description

Offset

0x0 0xC Vendor-specific SCSI command

0ox1 0 Reserved

0x2 0 Reserved

0x3 0 Reserved

0x4 6 Command header length

0x5 0 Reserved

0x6 OXEC for the INDENTIFY ATA command register input value
0xBO for the SMART

0x7 Depends on the command ATA sector number register input value

0x8 Depends on the command ATA features register input value

0x9 Depends on the command ATA sector count register input value

OxA Depends on the command ATA LBA Mid register input value

0xB Depends on the command ATA LBA High input value

oxC Depends on the command ATA device register input value

0xD Depends on the command ATA error register input value

Copyright © 2005 Marvell

July 26, 2005, Preliminary

CONFIDENTIAL

Document Classification: Proprietary Information

Doc. No. MV-S800188-00 Rev. A
Page 31

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

3.3 Building and Running the Project

3.3.1 Requirements

The requirements are:

* Linux machine with kernel 2.4 or 2.6 series

e Serial ATA Host Adapter software package

* Native GNU toolchain compilers (gcc, Id etc.)
. Kernel header files.

3.3.2 Building and Running the Project

To build and run the project:

1. Login as root.

2. Change the current directory to LinuxIAL.

3. Put the linux kernel header files under /usr/src/linux-2.x (where x is 4 for kernel based on 2.4 version and 6
for kernel based on 2.6 version)

4. Execute a make command on the shell.

Add a SCSI subsystem to the running kernel by executing /shin/modprobe scsi_mod.

6. Run the kernel module by executing /shin/insmod mv_sata.o.
This detects storage devices connected to the SATA adapter and presents them as SCSI storage devices to
the Linux kernel.

o

To build a project with three different levels of log messaging:

1. Login as root.

2. Change the current directory to LinuxIAL.

3. Put the linux kernel header files under /usr/src/linux-2.x (where x is 4 for kernel based on 2.4 version and 6
for kernel based on 2.6 version)

4. Execute a sh build.sh command on the shell.

5. The script creates target directory build/Linux in driver root.
The target directory structure is:
build/Linux/DebugError/mv_sata.o - Module prints log messages on error.

build/Linux/DebugFull/mv_sata.o - Module prints all log messages.
build/Linux/Free/lmv_sata.o - Module prints no messages.

6. Add a SCSI subsystem to the running kernel by executing /sbin/modprobe scsi_mod.

Change the current directory to the desired target directory, e.g., cd ./../build/Linux/DebugFull.

8. Run the kernel module by executing /shin/insmod mv_sata.o.
This detects storage devices connected to the SATA adapter and presents them as SCSI storage devices to
the Linux kernel.

| §|| Notes

» If the kernel header files are not located in the /usr/src/linux-2.x directory, edit the Makefile in the
LinuxIAL directory and change the value of the KERNEL_SRC parameter to the desired directory.

N

» If you need to cross-compile the project (and not compile it with native tools), edit the Makefile and
modify the CROSS_COMPILE parameter so it has the prefix of the desired cross compiler toolchain

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 32 Document Classification: Proprietary Information July 26, 2005, Preliminary

Linux Intermediate Application Layer
Building and Running the Project

(e.g., for PowerPC, CROSS_COMPILE is assigned the value powerpc-linux-). Also, modify the
CFLAGS parameter to the correct values. (See the example in the Makefile.)

« To stop and remove the kernel module from the Linux kernel, execute rmmod linuxIAL.

3.3.2.1 Building the Project for Linux RedHat

This section describes how to build the project that makes it possible to install and boot Linux RedHat on an Serial

ATA Host Adapter.

1. Login as root.

2. Fordistributions based on kernel 2.4 download the Redhat kernels to a directory, e.g., /usr/src/kernels/. For
RedHat 8 you must have a directory /usr/src/kernels/2.4.18-14 and for RedHat 9 you must have a directory
lusr/src/kernels/2.4.20-8.

3. Fordistributions based on kernel 2.6 (e.g Fedora Core 3), create directory under /usr/src/kernels/ with the
name of the kernel release, and under that directory create directory for each kernel configuration then put
the kernel sources tree for that configuration. for example, to create drivers for Fedora Core 3 for x86 cpu:

- mkdir /usr/src/kernels/2.6.9-1.667

- mkdir /usr/src/kernels/2.6.9-1.667/i586

- mkdir /usr/src/kernels/2.6.9-1.667/i686

- mkdir /usr/src/kernels/2.6.9-1.667/smp

- download the kernel rpm for i586 (kernel-2.6.9-1.667.i586.rpm)

4. Change the current directory to RedHat (under LinuxIAL).- run rpm2cpio kernel-2.6.9-1.667.i1586.rpm | cpio -
id

5. Run mv lib/modules/2.6.9-1.667/sources/* /Jusr/src/kernels/2.6.9-1.667/i586

6. Do the last 3 steps for i686 and smp kernels.

7. To make sure the files are in Unix format, run the following command:
> dos2unix gen_module.sh files/*

8. Execute sh gen_module.sh /usr/src/kernels. This generates files in the Files directory.

9. Copy these files to a diskette.

10. Start the RedHat installation on the required computer which has the Serial ATA Host Adapter(s).

11. During installation, select Expert mode and follow the installation instructions.

12. When a driver disk is requested, insert the diskette in Drive A and continue with the installation.

| §|| Notes

« The gen_modules.sh script scans all directories under /usr/src/kernels and according to the directory
names it generates four drivers per directory name. The four drivers are drivers for boot, single CPU,
SMP, and bigmem.

* Due to the fact that gen_modules.sh scans directories under /usr/src/kernels, it needs the exact ver-
sion of the kernel for which the drivers are being built. For example, for RedHat 9 kernel, the directory
name must be 2.4.20-8, which is the exact kernel version RedHat 9 installation is shipped with.

3.3.2.2 System Monitoring and Driver/proc Extension

After installing the Linux kernel module mv_sata.o, a new directory called ‘'mvSata’ is added to the /proc/scsi/
directory.

This directory has one or more files in it. Each file’s name is a number (number of the registered Scsi Host). Each
file indicates a sequence number of a single SATA channel of Serial ATA Host Adapter.

For example if there is a single 885X5041 adapter and there are no other SCSI adapters in the system, Four files
named O up to 3 will be found.

Two operations can be done on each of the /proc extension files—reading from them and writing to them.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 33

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

3.3.2.3 Reading from the /proc Extension files

When reading from a /proc extension file (for example by executing cat /proc/scsi/mvSata/0) the output is as fol-
lows:

Version_1_1

TimeStamp:
4296691780 1000

Number of interrupts generated by the adapter is:
15

PCl1 location: Bus 10, Slot 9
DevicelD: 6042, Rev 1, adapterld 1, channel 1

Adapter Channel Id LUN TO TS Vendor Mode LBA48
1 1 0 0 1 8 Maxtor NCQ 1
TO - Total Outstanding commands accumulated

TSA - Total number of 10s accumulated

TS - Total number of sectors transferred (both read/write)
Mode - EDMA mode (TCQINCQ|Normal)

LBA48 - Large Block Address 48 feature set enabled

The meaning of the output is:
e Version_1_1'is the output version of the /proc extension file.

* TimeStamp is the timestamp of the system. The first number is the tick count of the operating system and the
second is the number of ticks the operating system counts per second (fixed number).

* Number of interrupts produced by the adapter: Note that even if the same interrupt line on the PCl is shared
with other adapters, this number will still count the real number of interrupts generated by the adapter.

* Description of the channels attached to the adapter:

Adapter, Channel, SCSI ID

ID, LUN
TO Number of outstanding commands accumulated.
TSA Total number of 10 operations.
TS Total number of sectors transferred through the specific SATA channel.
Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 34 Document Classification: Proprietary Information July 26, 2005, Preliminary

Linux Intermediate Application Layer
Building and Running the Project

Vendor Model number of the storage device connected to the specific SATA channel.
Mode Indication of DMA mode.
LBA48 Indication that the storage device has the 48-bit LBA addressing feature set enabled

(indicated by value 1).

3.3.2.4 Writing to the /proc Extension Files

It is possible to do three different things while writing to the /proc extension files:

* Change interrupt coalescing parameters: Executing a write to the /proc extension file (e.g., echo "int_coal 1
30 10000" > /proc/scsi/mvSata/0) changes the values of the interrupt coalescing parameters of the specific
SATA unit (each quad SATA unit contains 4 SATA channels). The format is int_coal x y z, where x is the
SATA unit (0 or 1), y is the number of completed commands needed to generate an interrupt, and z is the tim-
eout in 150 MHz ticks, where the adapter starts counting after the first command is completed.

e Shut down a SATA physical interface: Execute echo "sata_phy_shutdown x" > /proc/scsi/mvSata/O to
shut down a SATA PHY x.

e Power up a SATA physical interface: Execute echo "sata_phy_powerup x" >/proc/scsi/mvSata/0 to power
up a SATA PHY x.

| §|| Notes

¢ All values indicated by x, y, and z above should be in decimal format.

« After power-up, the SATA physical interfaces are all powered up.

3.3.3 Hot-Swapping Storage Devices

When adding or removing a storage device from an operating system, when the Serial ATA Host Adapters driver is
already up and running, the SCSI subsystem must be informed of the changes made. This is done by executing
Add or Remove requests to the SCSI subsystem.

3.3.3.1 Adding a Storage Device

To add a storage device to a specific SATA channel on a specific adapter (e.g., channel y on adapter x or device z

on channel y on adapter x in the case of a port multiplier):

1. Poll on the /proc extension file relevant to adapter x and wait until channel y is valid (and the variable z if the
hard drive is connected to a port multiplier)

2. Forkernel 2.4 based systems execute 'echo "scsi add-single-device x y z 0" > /proc/scsi/scsi’. For kernel 2.6
based systems, where scsi hot-pug is supported, there is no need for user intervention.

| §|| Note

If the hard drive is connected directly to the adapter’'s SATA channel and not through port multiplier, then
z parameter equals 0

3.3.3.2 Removing a Storage Device

To remove a storage device that is connected on SATA channel y on adapter x (and z if the hard drive is con-

nected through a port multiplier):

1. For kernel 2.4 based systems execute 'echo "scsi remove-single-device x y z 0" > /proc/scsi/scsi’. For kernel
2.6 based systems, where scsi hot-plug is supported, there is no need for user intervention.

2. Remove the storage device connected to SATA channel x on a adapter y.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 35

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

| §I| Note

If the hard drive is connected directly to the adapter’'s SATA channel and not through the port multiplier,
then z parameter equals 0

3.4 Linux IAL SCSI Host Template Driver API

SCSI Host Template Functions

mv_ial_ht_detect Emulates SCSI host controller to the Linux SCSI mid-level subsystem.
Detects Serial ATA Host Adapter adapters on PCI buses. For the adapter it
detects, calls mv_ial_lib_init_adapter.

mv_ial_ht_proc_info Prints into a buffer information with regards to a specific Serial ATA Host
Adapter adapter. This information is intended for the /proc file system.

mv_ial_ht_queuecommand Schedules a translation of SCSI commands to ATA commands and issues
execution to a specific Serial ATA Host Adapter adapter using the CORE
driver API.

mv_ial_ht_hl_bus_reset Resets a specific SCSI bus. Eventually it is translated to reset a specific
serial ATA channel.

mv_ial_ht_release Shuts down and frees all resources for a specific Serial ATA Host Adapter
adapter.

3.5 Linux IAL Extension Library

Serial ATA Host Adapter Device Initialization

mv_ial_lib_init_channel Initializes a specific Serial ATA Host Adapter SATA channel by setting
request/response queues, etc.
mv_ial_lib_free_channel Releases a specific Serial ATA Host Adapter SATA channel.

PRD Table Generation

mv_ial_lib_prd_init Initializes a PRD table pool for a specific Serial ATA Host Adapter.
mv_ial_lib_prd_destroy Destroys a PRD table pool for a specific Serial ATA Host Adapter.
mv_ial_lib_prd_free Frees a PRD table.

mv_ial_lib_generate_prd Generates a PRD table from a Linux SCSI command buffer.

Interrupt Service Routine

mv_ial_lib_int_handler CORE driver ISR wrapper.
Event Notification
mv_ial_lib_event_notify Event notification upon an event (Interrupt) from the Serial ATA Host
Adapter.
Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 36 Document Classification: Proprietary Information July 26, 2005, Preliminary

Windows Intermediate Application Layer
Introduction

Section 4. Windows Intermediate Application Layer

4.1 Introduction

The Serial ATA Host Adapter Windows 2000/XP/2003 Intermediate Application Layer (IAL) is a software layer
positioned under the Windows SCSI port driver and above the CORE driver, SAL, and Common IAL.

The Windows 2000/XP/2003 IAL implements a SCSI Miniport driver that receives SCSI-3 commands and for-
wards them to SCSI to ATA translation layer for further queuing to hardware via CORE driver API.

Windows SCSI Port driver

I

I

| System-dependent

: Header File (mvOs.h)
I

I

| mvSata.sys H :
| |
| Windows IAL :
| |
I |
I |
I |
I |
I |
I : |
I dSystedm- . | Common Intermediate | SCSlto ATA dSystedm- ; l
| Hggcelgr Iiﬁe Application Layer tasks j‘> translation layer Hggsgr liirlle | :
: (mvOs.h) (OS - indepndent) (OS - independent) (mvOs.h) |
I ‘ |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |

Hardware

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 37

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

4.1.1 Windows IAL SCSI Miniport Driver Functionality

The Windows IAL SCSI miniport driver implements the following functionality:
* Represents the Serial ATA Host Adapter as a SCSI host adapter.
* Triggers Serial ATA Host Adapter initialization sequence.

* Triggers storage devices connected to Serial ATA Host Adapter SATA channels via Common IAL functions.

e CORE driver Interrupt Service Routine (ISR) Wrapper.
e Error Handling: Performs mapping of SAL error status to SCSI port error status.
e Handles hot-plug events, and notifies the SCSI port layer about these events.

* Windows IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) support

The Windows IAL SCSI miniport driver fully supports the Windows drive failure prediction (SMART) IOCTL inter-

face.

The application can use the SMART IOCTL commands (all Windows versions, except of Windows.NET) or WMI
predictive failure capabilities to execute SMART commands via the SATA SCSI miniport driver.

| ;I | Notes

» For an explanation of WMI support for SMART drives see http://www.microsoft.com/whdc/hwdev/

driver/WMl/smartdrv.mspx

* For an explanation of SMART IOCTL interface support in Windows see the SMARTAPP example at

http://support.microsoft.com/default.aspx?scid=kb:en-us:Q208048.

The following SMART commands are supported by the Windows IAL:

e |IDENTIFY - ATA IDENTIFY (not a SMART command, but can be sent using this IOCTL interface)

¢ ENABLE SMART

* DISABLE SMART

* ENABLE DISABLE AUTOSAVE
¢ EXECUTE OFFLINE DIAGS

* RETURN STATUS

* READ SMART ATTRIBS

* READ SMART THRESHOLDS
* READ SMART LOG

* WRITE SMART LOG

4.2 Building and Installation

4.2.1 Requirements

The requirements are:
e Computer running Windows 2000/XP/2003.
e Serial ATA Host Adapter software package

e Microsoft Driver Development Kit build environment for Windows 2000/XP/2003.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL

Page 38 Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

http://www.microsoft.com/whdc/hwdev/driver/WMI/smartdrv.mspx
http://www.microsoft.com/whdc/hwdev/driver/WMI/smartdrv.mspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q208048

Windows Intermediate Application Layer
Building and Installation

| §|| Note

If you use Windows 2000 DDK (which doesn’t include built-int toolchains as in Windows 2003 DDK), then
you may also need Microsoft Visual C++ Enterprise edition.

4.2.2 Building

To build the driver:

1. Invoke the DDK Free Build Environment under the windows DDK program group.
This starts a command prompt window and sets some environment variables).

2. Change the current directory to Windows IAL.

3. Run the batch file mvsata_build.bat from the current directory. The generated binary file (mvsata.sys) will
be located under the directory install.

To build a driver with three different levels of log messaging
1. Go to the command prompt window.
2. Change the current directory to Windows IAL
3. Run the batch build_all.bat with the parameter indicating the DDK directory, for example build_all.bat
C:\winddk\3790.
4. The batch file creates the build/Windows target directory in driver root. The target directory structure is the
following:
- build/Windows/<Platform>/DebugError/mvSata.sys - Module prints log messages on error.
- build/Windows/<Platform>/DebugFull/mvSata.sys - Module prints all log messages.
- build/Windows/<Platform>/Free/mvSata.sys - Module prints no messages.
5. Where the <Platform> parameter can be either i386 (used in 32-bit Windows versions) or amd64 (used in
Windows version for AMD 64-bit processor.)

| §|| Note

For building to i386 and amd64 platforms, Windows 2003 DDK must be installed.

4.2.3 Installation of the Driver into a Running System

The installation of the driver can be done by using the Windows Device Manager. Note that the driver .inf and .sys
files location depends on the build type chosen in Section 4.2.2 "Building" on page 39.

4.2.4 Installing Windows 2000/XP/2003 on a Marvell Serial ATA
Host Adapter

This section describes how to install and boot from a Serial ATA Host Adapter.
1. Copy the mvSata.inf, mvSata.sys and txtsetup.oem files to a diskette.
2. Start a Windows installation on a CD-ROM.

3. When prompted, press the F6 key (at the beginning of the installation).

4

When prompted, press the S key, then insert the diskette in Drive A and continue the installation, following the
installation instructions.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 39

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

4.2.5 Using Windows 2000/XP/2003 SCSI Parameters

View the .reg files under the Install directory and follow the instructions to enter registry values that affect how the
Windows 2000/XP/2003 SCSI manager interprets the generic configuration information of SCSI device drivers.

These values can affect all the Serial ATA Host Adapters’ installed drivers or a specific driver. They will take effect
the next time the driver is started. Following are the registry files supplied and a description of the values they set:

* mv_256k.reg specifies the maximum I/O length of transactions issued by the Windows SCSI Port.
* mv_maxReqs specifies the number of outstanding SCSI requests per SCSI adapter.

4.2.6 Hot-Swapping Storage Devices

This driver supports hard drive and port multiplier hot-swapping. The storage drive can be connected or discon-
nected on the fly.

On a connect event the system may take a few seconds before it updates the device manager with regards to the
new device added. This is due to the disk initialization sequence, which may be stalled due to hard drive initializa-
tion (e.g., when initializing the hard drive’s mechanics).

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 40 Document Classification: Proprietary Information July 26, 2005, Preliminary

Bios Extension Driver Intermediate Application Layer
Introduction

Section 5. Bios Extension Driver Intermediate
Application Layer

5.1 Introduction

The main purpose of the Serial ATA Host Adapter BIOS Extension driver is to enable interrupt 13h extensions to
hard drives connected to Serial ATA Host Adapter SATA channels.

Figure 4 describes the connectivity of the different software layers.

Figure 4: BIOS IAL Driver Architecture

Applications System BIOS

BIOS
Extension
Driver

System-dependent CORE Driver (OS
Header File (mvOs.h) independent)

Hardware

5.1.1 BIOS Extension Driver Functionality

The BIOS extension driver provides the following functionality:
e Support for PnP and non-PnP system BIOSes
* Initialization of Serial ATA Host Adapters

* Initialization of storage devices connected to Serial ATA Host Adapter SATA channels 0 and 1. If port multi-
plier is connected (to channel 0 or 1), only disk on port O is initialized and hooked.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 41

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

e Each loaded extension image scans the adapters and takes control over up to four adapters.
Each adapter:

— Is not controlled by another loaded image.
— Has at least one discovered disk.
e Servicing interrupt 13h calls

| ;I | Notes

» Interrupt 13h servicing is done via source code found in the BIOS IAL. The CORE driver interface for
gueuing and executing commands is not used for int13h servicing, due to the fact that in run-time the
text and data sections of the driver are read-only, and only the caller’s stack is read-write. This makes
itimpossible to call CORE driver functions, which need to maintain data structures and pointers to the
status of the queues.

» The BIOS extension driver does not provide hotplug functionality.

5.2 Building and Installation

The build process results in the following files:
* mvFIshUp.com utility - This utility flashes the BIOS extension driver to a specific Serial ATA Host Adapter.

o 5080.IMG, 5081.IMG 7042.IMG - These are different BIOS extension drivers, each for a different Serial
ATA Host Adapter.

5.2.1 Requirements

The requirements are:

e PC running Windows 2000 or above

* Watcom C/C++ compiler.

e Serial ATA Host Adapter software package.

e DOS for flashing the BIOS extension driver into Serial ATA Host Adapter the adapter’s flash.

| ;I | Notes

» The project build was tested mainly on Watcom C/C++ compiler version 1.0 on a PC running Windows
2000.

* The compiler is an open-source compiler that can be downloaded and installed from
http://www.openwatcom.org. The installation should be for DOS 16/32bit and Windows 16/32 bit
targets.

5.2.2 Building

To build the driver:
1. Open acommand line and change the directory to BioslAL from the software package root tree.
2. Execute makeBiosDriver.bat.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 42 Document Classification: Proprietary Information July 26, 2005, Preliminary

http://www.openwatcom.org

Bios Extension Driver Intermediate Application Layer
Building and Installation

5.2.3 Installation of the BIOS Extension Driver

To install the BIOS extension driver:

1. Boot the system with DOS (MS-DOS, DR-DOS, or any other variant of DOS).

2. Copy mvFIshUp.com and the required BIOS extension driver image to a diskette.

3. Insert the diskette and run mvFIshUp.com <image name> (image name is the required BIOS extension
driver image).
The utility provides a list of available adapters to choose from.

5.2.4 Un-installation of the BIOS Extension Driver

To un- install the BIOS extension driver:

1. Boot the system with DOS (MS-DOS, DR-DOS or any other variant of DOS).

2. Copy mvFIshUp.com to a diskette.

3. Insert the diskette and run mvFIshUp.com /erase <adapter Device ID> (Adapter Device ID is the device ID
of the required adapter. This can be 0x5080, 5081 ... 0x7042).
The utility provides a list of available adapters to choose from.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 43

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

Section 6. Core Driver

6.1 Introduction

The CORE driver is a software package which is operating system and architecture independent. When a sys-
tem-dependent header file (mvOs.h file) is attached to the CORE driver, it can access and reserve system
resources that it needs for proper functioning.

The CORE driver API and data structures are divided into two main categories:

e CORE-driver-implemented APl and data structures: Includes most of the functions and data structures
being used. These functions are already implemented as part of the CORE driver software suite.

e User-implemented API and data structure: Includes several functions and a single data structure which
must be implemented by the user in the system-dependent header file (mvOs.h). In Section 6.2 and Section
6.3 the data structure and functions which must be implemented are referred to as "user-implemented"”.

| §I| Note

In this document, references to the "CORE driver API and data structure” mean the combination of CORE-
driver-implemented API and data structures plus the user-implemented API and data structure.

The CORE driver provides the following functionality:

e Serial ATA Host Adapter management, initialization, diagnostics and status reporting.
* Execution of UDMA ATA commands.

e Execution Non-UDMA ATA commands.

* Management of software queue of ATA commands per SATA channel. Each queue depth is 31 commands
(configurable).

* Management of command completion and events notification, based on call-back functions.
* Interrupt Service.
* |/O Granularity extension for generating a single interrupt on multiple 1/Os.

e Channel to Channel communication (aka Target mode): API for communication between two 88SX60x1,
88SX6042, and 88SX7042 adapters.

* Debug messages logging module: Generic debug messages logging module that is used by the CORE driver
and can be used by any other software layer.

This section is divided into the following sub-sections:

e “CORE Driver APl and Data Structures Summary”: A brief summary that categorizes the CORE driver API
into groups of functions and a brief description of the data structure being used. The purpose of this section is
to ramp up the user’s knowledge of the CORE driver’s interface.

e “Compile-Time CORE Driver Configuration”: Describes the functions, data types and data structures the
user must implement for proper integration of the CORE driver in the system. This section also deals with
restrictions the user must be aware of when integrating the CORE driver in the system.

e “CORE Driver API User Implementation Requirements and Restrictions”: Shows how to use the CORE
driver from the Intermediate Application Layer (IAL) point of view. It is separated into sub-sections, each
describing a specific task the IAL must use.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 44 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
CORE Driver APl and Data Structures Summary

e “Detailed CORE Driver Implemented API and Data Structures”: A complete reference to the CORE-
driver-implemented API and data structures.

e “System-Dependent Header File (mvOs.h)": Details the API, data types, and data structures the user must
implement for proper integration of the CORE driver in the system.

6.2 CORE Driver APl and Data Structures Summary

The following two sub-sections summarize the CORE driver API and data structures, which are categorized in
groups according to their functionality.

Figure 5: CORE Driver APl and Data Structures Block Diagrams

Upper Layers

o
<
o
=
S
w
&
o o T T T T T
| |
| System Cd;)vilrz |
| Dependent |
| Header file |
| (mvOs.h) :
| Functions |
|
|
: Functions |
| |
| i I |
: Data |
I Types |
| Data I
| Structures I
| Data |
| Structure |
| |
| |
| |
S _I
Conventional PCI / PCI-X buses
Marvell Serial ATA Marvell Serial ATA
Host Adapter Host Adapter
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 45

®

—
[—]
—

M ARVELL®

Software Driver User Manual for Marvell Serial ATA Host Adapters

6.2.1 CORE Driver APl Summary

CORE Driver Adapter Management
mvSatalnitAdapter Initializes Serial ATA Host Adapter.
mvSataShutdownAdapter Shuts down Serial ATA Host Adapter.
mvSataReadReg Reads from Serial ATA Host Adapter internal register.
mvSataWriteReg Writes to Serial ATA Host Adapter internal register.

CORE Driver SATA Channel Management
mvSataConfigureChannel

mvSataRemoveChannel
mvSatalsStorageDeviceConnected
mvSataChannellHardReset

mvSataSetFBSMode
mvSataConfigEdmaMode
mvSataEnableChannelDma
mvSataDisableChannelDma
mvSataF lushDmaQueue

mvSataNumOfDmaCommands
mvSataGetNumOfPortQueuedCommands

mvSataSetIntCoalParams

mvSataSetChannelPhyParams
mvSataChannelPhyPowerOn
mvSataChannelPhyShutdown
mvSataChannelFarLoopbackDiagnostic
mvSataEnableStaggeredSpinUp

mvSataEnableStaggeredSpinUpAll

Configures Serial ATA Host Adapter-specific SATA
channel.

Removes Serial ATA Host Adapter-specific SATA
channel.

Checks if storage device is connected to specific
SATA channel.

Causes Serial ATA Host Adapter to reset a specific
SATA channel.

Enables FIS-based switching mode.

Configures specific SATA channel's EDMA mode.
Enables specific SATA channel's EDMA mode.
Disables specific SATA channel’'s EDMA mode.

Flushes corresponding SATA channel’s request
queue.

Returns number of posted DMA commands on a spe-
cific SATA channel request queue.

Gets the number of the outstanding commands for
the given port.

Sets interrupt coalescing for specific quad SATA
channels Serial ATA Host Adapter (or octal SATA
channels on 88SX60X1 adapters).

Sets the AMP and PRE values of a specific SATA
channel.

Powers up the physical interface of a specific SATA
channel.

Shuts down the physical interface of a specific SATA
channel.

Performs an external loopback test of specific SATA
channel.

Enables SATA communication on a specific SATA
channel.

Enables SATA communication on all SATA channels.

Doc. No. MV-S800188-00 Rev. A
Page 46

CONFIDENTIAL

Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

Core Driver
CORE Driver APl and Data Structures Summary

mvSataDisableStaggeredSpinUp

mvSataDisableStaggeredSpinUpAll
mvSataSetlInterfaceSpeed

mvSataGetlInterfaceSpeed
mvSataSetInterfacePowerState

mvSataGetInterfacePowerState

Disables SATA communication on a specific SATA
channel.

Disables SATA communication on all SATA channels.

Modifies SATA speed (Gen I/ll) on a specific SATA
channel.

Returns SATA speed (Gen I/ll) on a specific SATA
channel.

Sets the SATA interface power state of a specific
SATA channel.

Gets the SATA interface power state of a specific
SATA channel.

Non-UDMA ATA Command Execution Task (Polling driven)

mvStorageDevATAExecuteNonUDMACommand
mvStorageDevATAldentifyDevice
mvStorageDevATASetFeatures
mvStorageDevATAldlelmmediate

mvStorageDevATASoftResetDevice
mvStorageDevATAStarSoftResetDevice

mvStoragelsDeviceBsyBitOff
mvStorageDevExecuteP10
mvStorageDevSetDeviceType

mvStorageDevGetDeviceType

Issues user-specific non-UDMA ATA command to
specific storage device.

Issues IDENTIFY DEVICE ATA command to specific
storage device.

Issues SET FEATURES ATA command to specific
storage device.

Issues IDLE IMMEDIATE ATA command to specific
storage device

Issues SRST sequence to specific storage device.

Issues SRST sequence to specific storage device but
does not poll for disk ready status.

Returns MV_TRUE if storage device busy bit is off.

Issues user-specific PIO ATA command to specific
storage device (using ATA registers data structure as
input and output for the function).

Sets the storage device type connected to a specific
SATA channel.

Retrieves the storage device type connected to a
specific SATA channel

Port multiplier functions (Polling driven)
mvPMDevReadReg
mvPMDevWr i teReg
mvPMDevEnableStaggeredSpinUp

mvPMDevEnableStaggeredSpinUpAll

Reads a port multiplier’s internal register.
Writes to a port multiplier’s internal register.

Enables communication on a specific SATA channel
on a port multiplier’s device ports.

Enables communication on all SATA channels on a
port multiplier’s device ports.

Queue Asynchronous ATA Commands (Interrupt driven)

mvSataQueueCommand

Adds ATA command to an asynchronous commands
queue.

Copyright © 2005 Marvell
July 26, 2005, Preliminary

CONFIDENTIAL

Document Classification: Proprietary Information

Doc. No. MV-S800188-00 Rev. A
Page 47

M ARVELL®

®

—
[—]
—

Software Driver User Manual for Marvell Serial ATA Host Adapters

mvSataCommandCompletionCal IBack

mvSataEventNotify

Command Completion and Event Notification (User-Implemented)

Callback function called upon specific command
completion.

Event notification, upon event (Interrupt) from Serial
ATA Host Adapter.

Interrupt Service Routine

mvSatalnterruptServiceRoutine
mvSataMaskAdapterinterrupt
mvSataUnmaskAdapterinterrupt
mvSataSetInterruptScheme

mvSataCheckPendinglInterrupt

mvSatab60X1B2CheckDevError

Interrupt Service Routine

Masks Serial ATA Host Adapter interrupts.
Unmasks Serial ATA Host Adapter interrupts.
Modifies CORE driver interrupt scheme.

Used for checking whether an interrupt is pending
only in the interrupt scheme, where interrupt handling
is performed in a task and not in the ISR.

Checks if the drive reported device errors.

The 60X1 B2 may not issue an error interrupt when
the device error is reported, after transferring part of
the data.

System Routines (User Implemented)

mvOsSemInit

mvOsSemTake

mvOsSemRelease
mvOsSaveFlagsAndMaskCPUInterrupts
mvOsRestoreFlags
mvMicroSecondsDelay

mvLogMsg

Initializes semaphore.

Takes ownership of a semaphore.

Releases ownership of a semaphore.
Saves CPU flags and masks its interrupts.
Restore CPU flags.

Delays function in micro-seconds resolution.

User implemented function that enables logging of
CORE driver messages.

Logger functions

mvLogRegisterModule
mvLogSetModuleFilter
mvLogGetModuleFilter
mvLogMsg

Associate the module with the logger.
Set log filter for the module

Get log filter for the module

Prints log message

mvSataEnableloGranularity

Interrupt coalescing in I/O granularity functions

Enables support for interrupt coalescing in 1/O granu-

larity.

mvSataC2Clnit

mvSataC2CStop

Channel to channel communication (aka Target mode) functions

Initializes channel to channel communication mode
for a specific SATA channel.

Disables channel to channel communication mode
for a specific SATA channel.

Doc. No. MV-S800188-00 Rev. A
Page 48

CONFIDENTIAL

Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

Core Driver
Compile-Time CORE Driver Configuration

mvSataC2CSendRegisterDeviceToHostFIS Sends Register Host to Device FIS.
mvSataC2CActivateBmDma Activates Bus Master DMA for the channel.
mvSataC2CResetBmDma Resets Bus Master DMA for the channel.

6.2.2 CORE Driver Data Structure Summary

Data structures modified by IAL and CORE driver.

MV_SATA_ADAPTER Data structure representing Serial ATA Host Adapter.
MV_SATA_ CHANNEL Data structure representing a specific Serial ATA Host Adapter
SATA channel.

MV_STORAGE_DEVICE_REGISTERS Data structure representing a storage device’s registers. Used
upon completion of both UDMA and non-UDMA ATA com-

mands.
MV_SATA_EDMA_PRD_ENTRY Data structure representing a single entry in the Serial ATA
Host Adapter PRD table.
MV_UDMA_COMMAND_PARAMS Data structure for passing UDMA ATA command parameters

to the mvSataQueueCommand() function.

MV_NONE_UDMA_COMMAND_PARAMS Data structure for passing non-UDMA ATA command
parameters to the mvSataQueueCommand() function.

MV_QUEUE_COMMAND_INFO Data structure for queuing ATA commands through the
mvSataQueueCommand() function.
MV_OS_SEMAPHORE User-implemented data structure, used for locking/unlocking

MV_SATA_ADAPTER and MV_SATA_CHANNEL.

6.3 Compile-Time CORE Driver Configuration

Several parameters that can be configured in compile time. These are discussed in this section.

6.3.1 CORE Driver Logging Mechanism

For logging CORE driver debug messages, the following must be added to the user-specific mvOs.h file:
#define MV_LOG_DEBUG - For logging all debug messages.
#define MV_LOG_ERROR - For logging only error messages.

It is recommended to disable all logging mechanisms on a released driver, to minimize the driver’s footprint and
maximize performance.

6.3.2 CORE Driver Queue Size

The default behavior of the CORE driver in compile time is that its queue size is 31 commands.
It is possible to modify this behavior in compile by adding the following lines to the user-specific mvOs.h file:
#define MV_SATA OVERRIDE_SW_QUEUE_SIZE

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 49

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

#define MV_SATA_REQUESTED_SW_QUEUE_SIZE <queue size>
where <queue size> is the requested queue size (between 1 and 31).

The EDMA of the MVSX6042 and MVSX7042 devices supports the 128 entries mode, in addition to the legacy 32
entries mode. Adding the following line enables support of this feature:

#define MV_SATA_SUPPORT_GENZ2E_128 QUEUE_LEN.
When it has been defined, the CORE driver allocates up to 127 commands for each channel.

To override this default allocation length, add the following lines:
#define MV_SATA_OVERRIDE_GEN2E_SW_QUEUE_SIZE

#define MV_SATA_REQUESTED_GEN2E_SW_QUEUE_SIZE <queue size>
where <queue size> is the requested queue size (between 1 and 127).

6.3.3 Single Data Region Support

To enable single data region support, add the following line to the user-specific mvOs.h file:
#define MV_SATA_SUPPORT_EDMA_SINGLE_DATA_REGION

6.3.4 Allocating the Command Info Structure on the IAL Stack
Support

Older versions of the CORE driver used static allocation for the commands info data structure
(MV_QUEUE_COMMAND__INFO).

In Version 3.6.0 this allocation may be removed. Instead the CORE Driver uses memory allocated by the IAL.

To use this mode, the IAL must add the define MV_SATA_STORE_COMMANDS_INFO_ON_IAL_STACK, and must
make sure that the memory pointed by pCommandInfo (part of the MV_QUEUED_COMMAND_ENTRY structure) is
owned by the CORE driver as long as the command is not completed.

6.3.5 Channel-to-Channel Communication Support
(aka Target Mode)

To enable channel-to-channel communication support, the following line must be added to the user-specific
mvOs.h file:

#define MV_SATA_C2C_COMM

6.3.6 1/O-Granularity Interrupt Acceleration

To enable I/O-Granularity interrupt acceleration, the following line must be added to the user-specific mvOs.h file:
#define MV_SATA_10_GRANULARITY

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 50 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
CORE Driver APl User Implementation Requirements and Restrictions

6.4 CORE Driver API User Implementation Requirements
and Restrictions

This section describes the requirements that must be implemented by the user and the restrictions the user must
adhere to when using the CORE driver API.

6.4.1 Requirements

For the CORE driver to work properly, user-implemented functions, data types and data structures must be imple-
mented. In this document these requirements are marked as "User-implemented". For clarification purposes they
are listed again in this section.

| §|| Note

These functions, data types and data structures must all be implemented or declared in the system-
dependent header file (mvOs.h).

6.4.1.1 Command Completion and Event Notification
The user must implement the following functions:
mvSataCommandCompletionCal IBack

mvSataEventNotify

6.4.1.2 System Functions
The user must implement the following functions:
mvOsSemlInit

mvOsSemTake

mvOsSemRe lease

mvMicroSecondsDelay

#HHHHE ADD Logging mechanism functions ##HH

| §|| Note

If a locking mechanism is performed in higher layers above the CORE driver, then the user may consider
not using the CORE driver’s locking mechanism, by defining the above functions in the user-specific
mvOs.h file with a "while (0) {} " statement.

6.4.1.3 Data Types
The user must implement the following data types:
MV_VOID

MV_U32
MV_U16
MV_U8
MV_VOID_PTR
MV_U32_PTR

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 51

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_U16_PTR
MV_U8 PTR
MV_CHAR_PTR
MV_BUS_ADDR_T
MV_CPU_FLAGS

6.5 Detailed CORE Driver Implemented API and Data
Structures

6.5.1 Enumerators and Defines

6.5.1.1 Enumerators
MV_SATA_GEN - Enumerator for either MV_SATA_GEN_|, MV_SATA_GEN_Il or MV_SATA_GEN_IIE.

MV_BOOLEAN - Enumerator for the value MV_TRUE and MV_FALSE
MV_UDMA_TYPE - Enumerator for either MV_UDMA_TYPE_READ or MV_UDMA_TYPE_WRITE

MV_COMPLETION_TYPE - Enumerator for either MV_COMPLETION_TYPE_NORMAL or
MV_COMPLETION_TYPE_ERROR or MV_COMPLETION_TYPE_ABORT

MV_EVENT_TYPE - Enumerator for either MV_EVENT_TYPE_ADAPTER_ERROR,
MV_EVENT_TYPE_SATA_CABLE, or MV_EVENT_TYPE_SATA_ERROR.

MV_SATA_CABLE_EVENT - Enumerator for either MV_SATA_CABLE_EVENT_DISCONNECTED,
MV_SATA_CABLE_EVENT_CONNECTED, or MV_SATA_CABLE_EVENT_PM_HOT_PLUG.

MV_SATA_ERROR_EVENT - Enumerator for either
MV_SATA_RECOVERABLE_COMMUNICATION_ERROR,
MV_SATA_UNRECOVERABLE_COMMUNICATION_ERROR, or MV_SATA_DEVICE_ERROR.

MV_EDMA_MODE - Enumerator for either MV_EDMA_MODE_QUEUED,
MV_EDMA_MODE_NOT_QUEUED, or MV_EDMA_MODE_NATIVE_QUEUING.

MV_SATA_SWITCHING_MODE - Enumerator for either MV_SATA_SWITCHING_MODE_NONE,
MV_SATA_SWITCHING_MODE_CBS, MV_SATA_SWITCHING_MODE_QCBS, or
MV_SATA_SWITCHING_MODE_FBS.

MV_QUEUE_COMMAND_RESULT - Enumerator for either MV_QUEUE_COMMAND_RESULT_OK,
MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED,
MV_QUEUE_COMMAND_RESULT_FULL, MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS or
MV_QUEUE_COMMAND_RESULT_BAD_PARAMS

MV_NON_UDMA_PROTOCOL - Enumerator for either MV_NON_UDMA_PROTOCOL_NON_DATA,
MV_NON_UDMA_PROTOCOL_PIO_DATA_IN, or MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT.

MV_QUEUED_COMMAND_TYPE - Enumerator for either MV_QUEUED_COMMAND_TYPE_UDMA, or
MV_QUEUED_COMMAND_TYPE_NONE_UDMA.

MV_SATA_C2C_MODE - Enumerator for channel-to-channel feature. It determines the channel’s role in the
channel-to-channel communication mode of either MV_SATA _C2C_MODE_INITIATOR or
MV_SATA_C2C_MODE_TARGET

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 52 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_C2C_EVENT_TYPE - Enumerator for channel-to-channel feature. Can be either
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_DONE, or
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_ERROR, or MV_C2C_BM_DMA_DONE, or
MV_C2C_BM_DMA_ERROR.

MV_IOG_COMMAND_TYPE - Enumerator for I/O Granularity feature. Can be either
MV_IOG_COMMAND_TYPE_FIRST or MV_IOG_COMMMAND_TYPE_NEXT.

MV_SATA_INTERRUPT_SCHEME - Enumerator for either MV_SATA_INTERRUPT_HANDLING_IN_ISR,
MV_SATA_INTERRUPT_HANDLING_IN_TASK, or MV_SATA_INTERRUPTS_DISABLED.

MV_SATA_IF_SPEED - Enumerator for either MV_SATA_IF_SPEED_1_5_GBPS,

MV_SATA IF_SPEED_3 GBPS, MV_SATA_IF_SPEED_NO_LIMIT and MV_SATA_IF_SPEED_INVALID.

MV_SATA_IF_POWER_STATE - Enumerator for either MV_SATA_IF_POWER_PHY_READY,
MV_SATA_IF_POWER_PARTIAL, or MV_SATA_IF_POWER_SLUMBER.

MV_SATA_DEVICE_TYPE - Enumerator for either MV_SATA_DEVICE_TYPE_UNKOWN,
MV_SATA DEVICE_TYPE_ATA_DISK, MV_SATA_DEVICE_TYPE_ATAPI_DISK, or
MV_SATA DEVICE_TYPE_PM.

6.5.1.2 Defines

MV_SATA_DEVICE_ID_5080,MV_SATA_DEVICE_ID_5081, MV_SATA_DEVICE_ID_5040,
MV_SATA_DEVICE_ID_5041, MV_SATA_DEVICE_ID_6081, MV_SATA_DEVICE_ID_6041,
MV_SATA_DEVICE_ID_6042, and MV_SATA_DEVICE_ID_7042 - The different device ID per Serial ATA
Host Adapter’'s PCI configuration space.

MV_SATA_VENDOR_ID - The vendor ID for the Serial ATA Host Adapter PCI configuration space (equals
0x11AB).

MV_SATA_CHANNELS_NUM - Maximum number of serial ATA channels in a single Serial ATA Host
Adapter (equals 8).

MV_SATA_UNITS_NUM - Maximum number of serial ATA units in a single Serial ATA Host Adapter (equals
2).

MV_SATA_PM_MAX_PORTS - Maximum number of serial ATA ports of the Port Multiplier device.
MV_SATA_PM_CONTROL_PORT - The device port number of the control port of the Port Multiplier device.
MV_EDMA_QUEUE_LENGTH - Maximum number of outstanding UDMA ATA commands (equals 32).

MV_EDMA_GEN2E_QUEUE_LENGTH - Maximum number of outstanding UDMA ATA commands for the
MVSX6042 and MVSX7042 devices (equals 128).

MV_EDMA_REQUEST_ENTRY_SIZE - Size of a single entry in a request queue (equals 32).
MV_EDMA_RESPONSE_ENTRY_SIZE - Size of a single entry in a response queue (equals 8).
MV_EDMA_REQUEST_QUEUE_SIZE - Size of an entire request queue (equals 32 * 32 = 1024 bytes).
MV_EDMA_RESPONSE_QUEUE_SIZE - Size of an entire response queue (equals 32 * 8 = 256 bytes).
MV_EDMA_PRD_ENTRY_SIZE - Size of a single entry in a PRD table (equals 16).

MV_EDMA_PRD_SNOOP_FLAG - Flag indicating a snoop operation to be performed on the relevant PRD
entry.

MV_EDMA_PRD_EOT_FLAG - Flag indicating the end of a PRD table.

MV_ATA_IDENTIFY_DEV_DATA_LENGTH - Number of fields in the data array returned from a storage
device as a response for an IDENTIFY DEVICE ATA command (equals 256).

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 53

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_ATA_MODEL_NUMBER_LEN - Length of the model nhumber, as extracted from the IDENTIFY DEVICE

ATA command (equals 0x40).

MV_C2C_MESSAGE_SIZE - Definition for channel-to-channel communication feature. The maximum size of

user data transmitted with Register Device to Host FIS - equals to 10

Logger Defines
MV_LOG_DEBUG - The preprocessor variable. When one is set, all log debug messages are printed.

MV_LOG_ERROR - The preprocessor variable. When one is set, all log error messages are printed.

Log Message Type
MV_DEBUG_FATAL_ERROR - Critical Error message (0x1).

MV_DEBUG_ERROR - Error message (0x2).

MV_DEBUG_INIT - Debug messages during initialization (0x4).

MV_DEBUG_INTERRUPTS - Debug messages from interrupt service routine (0x8).
MV_DEBUG_SATA_LINK - Debug messages related to SATA link layer(0x10).
MV_DEBUG_UDMA_COMMAND - Debug messages related to UDMA commands (0x20).
MV_DEBUG_NON_UDMA_COMMAND - Debug messages related to non-UDMA commands (0x40).
MV_DEBUG_PM - Debug messages related to port multiplier (0x80).

MV_DEBUG - General debug message (0x100).

MV_RAW_MSG_ID - Specified instead of module ID in mvLogMsg() function call.
The message is printed without specifying module ID and debug level.

MV_LOG_PRINT - Macro that defines the OS-dependent print function used by the logger.

6.5.2 Data Structures

MV_SATA_ADAPTER
Fields set by the Intermediate Application Layer

MV_U32 adapterld - A unigue number for each Serial ATA Host Adapter. This number is only used for index-

ing multiple Serial ATA Host Adapters for the purpose of log messages.
MV_VOID_PTR IALData - is scratchpad data used only by IAL.

MV_U8 pciConfigRevisionld - Device revision number of the adapter, as reported from the revision

number in the adapter’s PCI configuration space.

MV_U16 pciConfigDeviceld - Device Id number of the adapter, as reported from the revision number

in the adapter’s PCI configuration space.

MV_BUS_ADDR_T adapterloBaseAddress - A CPU address for accessing an Serial ATA Host Adapter
adapter’s functionO, BARO base address.

MV_U32 intCoalThre[MV_SATA_UNITS_NUM] - Array of two fields indicating the Interrupt Coalescing
Threshold for each quad SATA channel.

MV_U32 intTimeThre[MV_SATA_UNITS_NUM] - Array of two fields indicating the Interrupt Time Threshold

in each quad SATA channel.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 54 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

mv SataEventNotify - Pointer to a call-back function, used by CORE driver to indicate error or status change
in an Serial ATA Host Adapter.

MV_SATA_CHANNEL *sataChannel [MV_SATA_CHANNEL_NUM] - Array of MV_SATA_CHANNEL_NUM
count in fields (equals 8). Each is a pointer to MV_SATA_CHANNEL data structures.

MV_U32 pciCommand - A 32-bit field describing the Serial ATA Host Adapter PCI command register.

MV_U32 pciSerrMask - A 32-bit field describing the bit masking register of the SERR# signal in the Serial
ATA Host Adapter.

MV_U32 pcilnterruptMask - A 32-bit field describing the bit masking register of the PCI unit Interrupt Cause
register.

MV_SATA_CHANNEL
Fields set by the Intermediate Application Layer

MV_U8 channelNumber - Logical number from 0.. MV_SATA_CHANNEL_NUM-1 (equals 7).

MV_DMA_REQUEST_QUEUE_ENTRY *requestQueue - CPU address (pointer) to the request queue of the
channel.

MV_DMA_RESPONSE_QUEUE_ENTRY *responseQueue - CPU address (pointer) to the response queue
of the channel.

MV_U32 requestQueuePCIHiAddress - High 32-bit PCI address of the SATA channel request queue.
MV_U32 requestQueuePCIlLowAddress - Low 32-bit PCI address of the SATA channel request queue.
MV_U32 responseQueuePCIHiAddress - High 32-bit PCI address of the SATA channel response queue.
MV_U32 responseQueuePCILowAddress - Low 32-bit PCI address of the SATA channel response queue.

MV_QUEUE_COMMAND_INFO
MV_QUEUED_COMMAND_TYPE type - Type of ATA command—UDMA or non-UDMA

MV_U8 PMPort - Destination port multiplier’s port number.

union

{

MV_UDMA_COMMAND_PARAMS udmaCommand;
MV_NONE_UDMA_COMMAND_PARAMS NoneUdmaCommand;

} commandParams - parameters of the ATA command.

MV_UDMA_COMMAND_PARAMS
MV_UDMA_TYPE readWrite - Whether the command is read or write.

MV_BOOLEAN isEXT - Indicates if the command is LBA48 or legacy command.
MV_BOOLEAN FUA - Indicates the value of the FUA field of FPDMA (aka NCQ) commands.
MV_U32 lowLBAAddress -The LSB 32 bits of the LBA sector address.

MV_U16 highLBAAddress - The MSB 16 bits of the sector LBA address.

MV_U16 numOfSectors - Number of sectors to transfer.

MV_U32 prdLowAddr - A low 32-bit PCI address to the PRD table of the command.
MV_U32 prdHighAddr- A high 32-bit PCI address to the PRD table of the command.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 55

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN singleDataRegion - MV_TRUE if the single data region is used for this command. In this
case prdLowAdd and prdHighAdd point to the I/O buffer rather than the PRD table. This field exists only when
the single data region feature is enabled.

MV_U16 byteCount - Holds the byte count of the 1/0 buffer if the single data region is used for this com-
mand. This field exists only when the single data region feature is enabled. A value of "0" indicates 64KB.

mvSataCommandCompletionCallBack_t callBack A callback function that is called when command
execution has been completed.

MV_VOID_PTR commandld - An arbitrary ID that uniquely identifies the command.
If I/O Granularity is enabled, then the following fields are valid:
MV_BOOLEAN ioGranularityEnabled - MV_TRUE if I/O Granularity feature is enabled.

MV_IOG_COMMAND_TYPE iogCommandType - Equals MV_IOG_COMMAND_TYPE_FIRST if this is
the first command in the 1/O granularity command chain. Otherwise equals
MV_IOG_COMMAND_TYPE_NEXT.

union {MV_U8 transld; MV_U8 transCount} iogGranularityCommandParam - If iogCommandType indi-
cates first command, then union refers to transCount, which indicates the number of I/Os the chain holds.
Otherwise the union refers to transld, which refers to the transaction chain ID of which this command is part.

MV_U8 iogCurrentTransld - If iogCommandType indicates first command, then iogCurrentTransld is output
from the CORE driver and it indicates the transaction ID allocated to the chain of commands. Otherwise,
iogCurrentTransld holds the transaction ID to which this command refers.

| §|| Notes

« Only in the case of a 48-bit LBA-feature-set-compliant storage device, numOfSectors can be more
than 256 sectors and LBA address is 48-bit. Otherwise, numOfSectors can be a maximum of 256
sectors and LBA address consists of a 28-bit address.

« If numOfSectors is zero and the isEXT field is MV_FALSE (48-bit address feature set is not in use),
then the UDMA command transfer size is 256 sectors.

« If numOfSectors s zero and the isEXT field is MV_TRUE (48-bit address feature set is in use), then
the UDMA command transfer size is 65,536 sectors.

MV_NONE_UDMA_COMMAND_PARAMS
MV_NON_UDMA_PROTOCOL protocolType - Protocol of the requested ATA command to perform.

MV_BOOLEAN isEXT- Equals MV_TRUE if the command is an LBA 48-bit extended command.

MV_U16_PTR bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be
word (16-bit) byte aligned).

MV_U32 count - Number of words to transfer from/to buffer.

MV_U16 features- The value to be written to the FEATURES register.

MV_U16 sectorCount - The value to be written to the SECTOR COUNT register.
MV_U16 IbaLow - The value to be written to the LBA LOW register.

MV_U16 IbaMid - The value to be written to the LBA MID register

MV_U16 IbaHigh - The value to be written to the LBA HIGH register.

MV_U8 device - The value to be written to the DEVICE register.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 56 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_U8 command - The value to be written to the COMMAND register.

mvSataCommandCompletionCallBack_t callBack - A callback function that is called when command
execution has been completed

MV_VOID_PTR commandld -An arbitrary ID that uniquely identifies the command.

MV_STORAGE_DEVICE_REGISTERS
Fields set either by the IAL or CORE driver (depending on the function used with this data structure).

MV_U8 errorRegister - Storage device’s error register.

MV_U16 featuresRegister - Storage device’s feature register. This field is set only by the CORE driver.
MV_U8 commandRegister - Storage device’s command register. This field is set only by the CORE driver.
MV_U16 sectorCountRegister - Storage device’s sector count register.

MV_U16 IbaLowRegister - Storage device’s low LBA register.

MV_U16 IbaMidRegister - Storage device’s mid LBA register.

MV_U16 IbaHighRegister - Storage device’s high LBA register.

MV_U8 deviceRegister - Storage device’s device register.

MV_U8 statusRegister - Storage device’s status register.

| §|| Note

The 16-bit fields in the MV_STORAGE_DEVICE_REGISTERS data structure are all used only in 48-hbit
LBA storage devices. When using legacy 28-bit LBA addressing, only the 8-bit LSB of these fields are
used.

MV_SATA_EDMA_PRD_ENTRY
Fields set by the Intermediate Application Layer:

MV_U32 lowBaseAddr - Low 32-bit address of the buffer the IAL needs to read/write.
MV_U16 byteCount - Length of the buffer (maximum 64 KByte).

MV_U16 flags - Flags indicating how the Serial ATA Host Adapter must handle this buffer.
MV_U32 highBaseAddr - High 32-bit address of the buffer the IAL needs to read/write.

MV_U32 reserved - Reserved field that IAL must not use.

| §|| Note

See the Serial ATA Host Adapter datasheet for further information about the fields described above.

6.5.3 CORE Driver API

6.5.3.1 CORE Driver Adapter Management

The following CORE driver adapter management functions initializes and configures the Serial ATA Host Adapter
and its SATA channels.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 57

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSatalnitAdapter (MV_SATA_ADAPTER *pAdapter)

DESCR

IPTION

Initializes the Serial ATA Host Adapter by writing the values passed in the MV_SATA_ADAPTER to the Serial
ATA Host Adapter hardware.

IAL allocates an MV_SATA_ADAPTER in the system memory then updates fields that are marked as "Fields

set by IA

L" in the MV_SATA_ADAPTER documentation above. The IAL then calls mvSatalnitAdapter,

passing to it a pointer to the allocated MV_SATA_ADAPTER data structure.

The mvS

1.
2.

5.
6.

INPUT

atalnitAdapter performs the following:

Masks the adapter’s interrupts

Using the pciConfigDeviceld and pciConfigRevisionld, identifies the adapter and accordingly sets
the internal workarounds needed for the adapter. If the revision ID is greater than the latest sup-
ported, the workarounds of the latest revision ID are implemented.

Reads the pre-emphasis and amplitude parameters of all SATA channels from the adapter and
saves them in the adapter data structure. This is done to preserve user-specific pre-emphasis and
amplitude that were previously configured (for example the configuration can be either by POST or
via an on-board TWSI EEPROM). Note that at every reset performed by software to the SATA chan-
nel, the saved pre-emphasis and amplitude values are written to the SATA channel.

Performs internal software reset of the adapter. If the adapter is an 88SX5040, 88SX5041,
88SX5080, or 885X5081, the function writes its default values to the 885X5040, 88SX5041,
88SX5080, or 88SX5081 internal registers. If the adapter is an 88SX6041, 88S5X6042, 88SX6081, or
88SX7042, then the function uses the global soft reset feature, which reverts all 88SX6041,
885X6042, 88SX6081, or 88SX7042 internal registers to their default value (except PCI configura-
tion space). See the 885X6041, 88SX6042, 885X6081, or 885X7042 datasheet for further informa-
tion about global soft reset.

Enables adapter’s LEDs.

Configures PCI registers with the user’s required parameters.

pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
corresponding Serial ATA Host Adapter.

RETUR

N

MV_TRUE on success

MV_FAL

SE on failure

| §|| Note

The

mvSatalnitAdapter function does not initialize the SATA channels in the Serial ATA Host Adapter

adapter.

MV_BOOLEAN mvSataShutdownAdapter (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Shuts down a specific Serial ATA Host Adapter.

IAL uses this function either before booting the system or for shutting down a non-usable Serial ATA Host

Adapter.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 58

Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
corresponding Serial ATA Host Adapter.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_U32 mvSataReadReg (MV_SATA_ADAPTER *pAdapter, MV_U32 regOffset)

DESCRIPTION
Returns the value of the register with the offset regOffset, in an Serial ATA Host Adapter pointed to by
pAdapter.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

regOffset - An offset to the register to read.

RETURN
32 bits that hold the value of the register.

| §|| Note

Several Serial ATA Host Adapter internal registers are implemented as 8-bit or 16-bit registers. The above
function can still be used for reading these registers. The read operation result in an 8-bit register will be
in the first 8 least significant bits of the return value. The reading operating in a 16-bit register will be in the
first 16 least significant bits of the return value.

| §|| Note

Accessing a drive's registers when EDMA is enabled is an unpredictable action.

MV_VOID mvSataWriteReg (MV_SATA_ADAPTER *pAdapter, MV_U32 regOffset, MV_U32
regValue)

DESCRIPTION
Writes a value regValue to a register with offset regOffset in an Serial ATA Host Adapter pointed to by
pAdapter.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

regOffset - An offset to the register to write.

regValue - The value to write to the register.

RETURN
N/A

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 59

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

| §I| Note

Several Serial ATA Host Adapter internal registers are implemented as 8-bit or 16-bit registers. The above
function can still be used for writing to these registers. The write operation uses the 8 least significant bits
in the regValue parameter for the 8-bit registers, and uses the 16 least significant bits in the regValue
parameter for 16-bit registers.

6.5.3.2 CORE Driver SATA Channel Management

MV_BOOLEAN mvSataConfigureChannel (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex)

DESCRIPTION
Configures SATA channel whose data structure is pointed to by pAdapter and channellndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds information to access the Serial
ATA Host Adapter device.

channellndex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §I| Note

Refer to the MV_SATA_CHANNEL data structure regarding parameters that must be filled in by the IAL
before calling the mvSataConfigureChannel () function.

MV_BOOLEAN mvSataRemoveChannel (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex)

DESCRIPTION
Removes data structures and other parameters used for the specific SATA channel that is indicated by
pAdapter and channellndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds information to access the Serial
ATA Host Adapter device.

channelindex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 60 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_BOOLEAN mvSatalsStorageDeviceConnected (MV_SATA_ADAPTER *pAdapter,
MV_U8 channellndex)

DESCRIPTION
Checks the Serial ATA Host Adapter to determine if a storage device is connected to a specific SATA chan-
nel, indexed by channelindex.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE if a SATA storage device is connected

MV_FALSE if a SATA storage device is not connected

| §|| Note

This function is used to check if a storage device is connected directly to a Serial ATA Host Adapter.
It can’t be used for checking if a storage device is connected to a port multiplier’s device port.

MV_BOOLEAN mvSataChannelHardReset (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex)

DESCRIPTION
Hardware resets a specific SATA channel.

If the adapter doesn’t support staggered spinup, as in the case of 88SX50XX, then an OOB sequence is
automatically triggered when the SATA channel reset sequence finished.

If the adapter does support staggered spinup, and it was previously enabled by the
mvSataEnableStaggeredSpinUp() function, then an OOB sequence is triggered by software after the
SATA channel reset sequence has been completed. Otherwise an OOB sequence is not triggered.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

| ;|| Note

This function does not poll for disk ready status (ATA status BSY bit transits to '0’) as in Release 3.1.2 and
older releases. To do this, the IAL must use the mvSataChannelHardReset() function to perform the
reset and OOB sequence, and afterwards use the mvStorage IsDeviceBsyBitOff() function for
polling on disk ready status.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 61

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSataSetFBSMode (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex, MV_BOOLEAN enableFBS, MV_BOOLEAN useQueuelLen128)

DESCRIPTION
Configures a specific SATA channel EDMA to enable/disable the FIS Base Switching mode. If FBS mode is
selected, it configures the EDMA queue depth mode of the SATA channel (32 entries mode or the 128 mode).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.
enableFBS - When true FBS mode is enabled.

useQueuelLen128 - When enableFBS is true, this field indicates whether or not to use the 128 entries mode
of the EDMA.

RETURN
MV_TRUE on success

MV_FALSE if:

— The FBS feature is set to be enabled for an adapter that doesn’t support this feature, or
— The function is called while the EDMA is enabled.
— useQueuelenl28 is true and enableFBS is false.

| §|| Note

This function only sets the sw configuration, the hardware is configured accordingly by
mvSataConfigEdmaMode()

MV_BOOLEAN mvSataConfigedmaMode (MV_SATA_ADAPTER *pAdapter, MV_U8
channelindex, MV_EDMA_MODE dmaMode, MV_U8 queueDepth)

DESCRIPTION
Configures a specific SATA channel EDMA mode (queued commands features set or non-queued commands
feature set).

If the queued commands features set is selected, it configures the queue depth the SATA channel may use.

This function also sets EDMA burst sizes to maximum supported by the adapter.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.

dmaMode - Can be either MV_EDMA_MODE_QUEUED, indicating queued commands feature set, or
MV_EDMA_MODE_NOT_QUEUED, indicating non-queued feature set.

gueueDepth - Valid only if queued commands feature set is selected. This parameter indicates the queue
depth the SATA channel may use.

RETURN
MV_TRUE on success

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 62 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_FALSE on failure

MV_BOOLEAN mvSataEnableChannelDma (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex)

DESCRIPTION
Enables the software ATA commands queuing engine in a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataDisableChannelDma (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex)

DESCRIPTION
Disables the software ATA commands queuing engine in a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataFlushDmaQueue (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex, MV_FLUSH_TYPE flushType)

DESCRIPTION

Flush posted ATA commands on a specific Serial ATA Host Adapter SATA channel software commands
queue. If the flushType parameter is MV_FLUSH_TYPE_CALLBACK, then all callback functions of the
posted and still not completed commands are called with a flush indication.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.

execCallBack - If this parameter equals MV_FLUSH_TYPE_CALLBACK, then all callback functions for all
posted and not completed ATA commands are called. If it equals MV_FLUSH_TYPE_NONE then the queue
is flushed without calling the callback functions.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 63

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_U8 mvSataNumOfDmaCommands (MV_SATA_ADAPTER *pAdapter, MV_U8 channellndex)

DESCRIPTION
Returns the number of posted ATA commands on the software ATA commands queue in a specific SATA
channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

RETURN
In the case of success, the return value is number between 0.. MV_MAX_CMD - Number of UDMA ATA com-
mands posted.

In the case of failure, the return value is OxFF.

MV_U8 mvSataGetNumOfPortQueuedCommands (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex, MV_U8 PMport, MV_U8* pCommandsPerChannel)

DESCRIPTION
Returns the number of posted ATA commands on the software ATA commands queue in a specific SATA
channel and specific port multiplier device port.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.
PMport - Device port number on the port multiplier.

pCommandsPerChannel - if not a NULL, then will be set with the total number of the outstanding commands
of the given channel.

RETURN
In the case of success, the return value is a number between 0.. MV_MAX_CMD and the Number of UDMA
ATA commands posted.

In the case of failure, the return value is OXFF.

MV_BOOLEAN mvSataSetintCoalParams (MV_SATA_ADAPTER *pAdapter, MV_US8 sataUnit,
MV_U32 intCoalThre, MV_U32 intTimeThre)

DESCRIPTION
Sets the interrupt coalescing for a specific SATA unit (each SATA unit contains quad SATA channels).

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 64 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

If the adapter supports all units interrupt coalescing (as in the case of the 88SX60X1 adapter) then sataUnit
equals OxFF, which signals the CORE driver to enable this feature.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

sataUnit - An index to a specific Serial ATA Host Adapter SATA unit. When sataUnit equals OxFF, this is an
indication for the CORE to enable the all units interrupt coalescing feature.

intCoalThre - Parameter indicating the Interrupt Coalescing Threshold to be set.

intTimeThre - Parameter indicating the Interrupt Time Threshold to be set.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Notes

¢ For further information about the Interrupt Time Threshold and Interrupt Coalescing Threshold
registers, see the Serial ATA Host Adapter datasheet.

« This function can be called in runtime without deactivating any SATA channel.

« When this function is called, intCoalThre and intTimeThre in the MV_SATA_ADAPTER data structure
are automatically updated.

MV_BOOLEAN mvSataSetChannelPhyParams(MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex, MV_U8 sighalAmps,M_U8 pre)

DESCRIPTION
Modifies the AMP and PRE of a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.
signalAmps - New value of the AMP (values can be from 0-7).
pre - New value of the PRE (values can be from 0-3).

RETURN
MV_TRUE on success

MV_FALSE on failure

| ;|| Note

CORE driver modifies the pre-emphasis and amplitude that were saved previously in the
MV_SATA_ADAPTER data structure by mvSatalnitAdapter (). This is done to preserve the new pre-
emphasis and amplitude values after each SATA channel reset.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 65

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSataChannelPhyPowerOn(MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex)

DESCRIPTION
Powers up the physical interface of a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Notes

» The physical interfaces of all SATA channels are powered on by default after reset.

MV_BOOLEAN mvSataChannelPhyShutdown(MV_SATA_ADAPTER *pAdapter, MV_U8
channelindex)

DESCRIPTION
Shuts down the physical interface of a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §I| Note

No disconnect interrupt will be asserted by the Serial ATA Host Adapter after the physical interface is shut
down.

MV_BOOLEAN mvSataChannelFarLoopbackDiagnostic (MV_SATA_ADAPTER *pAdapter,
MV_U8 channellndex)

DESCRIPTION
Performs a an external loopback (far end loopback) diagnostic of a specific SATA channel. The diagnostic
test can be only performed when a storage device is connected to the SATA channel.

The diagnostic test runs on the specific SATA channel PHY and the SATA PHY in the storage device con-
nected through the SATA cable.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 66 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter SATA channel.

RETURN
MV_TRUE on success of diagnostic

MV_FALSE on failure of diagnostic

| §|| Note

See the Serial ATA Host Adapter datasheet for an explanation of the external loopback diagnostics.

MV_BOOLEAN mvSataEnableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on the specific SATA channel.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataEnableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on all SATA channels for the specific
adapter.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 67

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

| §I| Note

The IAL can have a function loop calling mvSataEnab leStaggeredSpinUp() for all SATA channels on
the adapter; but the mvSataEnableStaggeredSpinUpAl 1 () function will be faster, since it does the
OOB sequence negotiation in parallel for all SATA channels.

MV_BOOLEAN mvSataDisableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex)

DESCRIPTION
Disables SATA channel communication on a specific SATA channel.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataDisableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Disables SATA channel communication on all SATA channels.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataSetinterfaceSpeed (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex, MV_SATA_IF_SPEED ifSpeed)

DESCRIPTION
This function sets (and can limit) interface speed negotiation for Gen | (1.5 Ghps) or Gen 1l (3 Gbps).

This function is relevant for adapters that support Gen | and Gen Il (for example the 88SX60X1 adapters).

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 68 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - Index to a specific Serial ATA Host Adapter channel.
ifSpeed - The required setting (or limitation) for the specific SATA channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_SATA_IF_SPEED mvSataGetinterfaceSpeed (MV_SATA_ADAPTER *pAdapter, MV_U8
channellindex)

DESCRIPTION
This function returns the currently negotiated interface speed.

This function is relevant for adapters that support Gen | and Gen Il (for example the 88SX60X1 adapters).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_SATA_IF_SPEED_INVALID - If SATA channel staggered spinup is disabled or if an error occurred on the
function parameters.

MV_SATA_IF_SPEED_1_5_GBPS - If currently negotiated interface speed is Gen I.
MV_SATA _IF_SPEED_3_GBPS - If currently negotiated interface speed is Gen Il

MV_BOOLEAN mvSataSetinterfacePowerState (MV_SATA_ADAPTER *pAdapter, MV_US8
channelindex, MV_SATA_IF_POWER_STATE ifPowerState)

DESCRIPTION
This function sets the SATA interface power state of a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.
ifPowerState - SATA interface power state.

RETURN
MV_TRUE if the desired power state was entered successfully. MV_FALSE otherwise.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 69

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSataGetinterfacePowerState (MV_SATA_ADAPTER *pAdapter, MV_U8
channellindex, MV_SATA_IF_POWER_STATE *ifPowerState)

DESCRIPTION
This function sets the SATA interface power state of a specific SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

ifPowerState - Pointer to the variable that will be set with the SATA interface power state by this function.

RETURN
MV_TRUE on success.

MV_FALSE on failure.

6.5.3.3 Execute Synchronous Non-UDMA ATA Commands (Polling Driven)

MV_BOOLEAN mvStorageDevATAExecuteNonUDMACommand (MV_SATA_ADAPTER

*pAdapter, MV_U8 channelindex, MV_U8 PMPort, MV_NON_UDMA_PROTOCOL protocolType,
MV_BOOLEAN isEXT, MV_U16_PTR bufPtr, MV_U32 count, MV_U16 features, MV_U16 sector-
Count, MV_U16 IbaLow, MV_U16 IbaMid, MV_U16 IbaHigh, MV_U8 device, MV_U8 command);

DESCRIPTION
Performs a user-defined non-UDMA command.

Possible commands must belong to a protocol of either non-data, PIO data-in or PIO data-out ATA command.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

PMPort - An index to the port multiplier’s destination port (equals 0 if no port multiplier available).
protocolType - Protocol of the requested ATA command to perform.

iISEXT - MV_TRUE if the command is an LBA 48-bit extended command.

bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be word (16-bit)
byte aligned).

count - Number of words to transfer from/to buffer.

features - The value to be written to the FEATURES register.
sectorCount - The value to be written to the SECTOR COUNT register.
IbaLow - The value to be written to the LBA LOW register.

IbaMid - The value to be written to the LBA MID register.

IbaHigh - The value to be written to the LBA HIGH register.

device - The value to be written to the DEVICE register.

command - The value to be written to the COMMAND register.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 70 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Note

When isEXT is MV_TRUE (extended command) All the 16-bit fields of the MV_U16 parameters to the
function are used. Otherwise only the 8 LSBs are used.

MV_BOOLEAN mvStorageDevATAldentifyDevice (MV_SATA_ADAPTER *pAdapter, MV_US8
channelindex, MV_U8 PMPort, MV_U16_PTR identifyDeviceResult)

DESCRIPTION
Performs an IDENTIFY DEVICE ATA command to the storage device connected to the SATA channel
indexed by channellndex. The resulting command’s data is stored in identifyDeviceResult.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.
PMPort - An index to the port multiplier’s destination port (equals 0 if no port multiplier available).

identifyDeviceResult - Holds a pointer to a 512 bytes data buffer that holds the IDENTIFY DEVICE ATA
command result.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATASetFeatures (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex, MV_U8 PMPort, MV_U8 subCommand, MV_U8 subCommandSpecificl, MV_U8
subCommandSpecific2, MV_U8 subCommandSpecific3, MV_U8 subCommandSpecific4)

DESCRIPTION
Performs a SET FEATURES ATA command to the storage device connected to the SATA channel indexed by
channellndex.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

PMPort - An index to port multiplier’s destination port (equals 0 if no port multiplier available).
subCommand - Sub-command for the SET FEATURES ATA command.
subCommandSpecificl - First parameter to the sub-command.

subCommandSpecific2 - Second parameter to the sub-command.

subCommandSpecific3 - Third parameter to the sub-command.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 71

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

subCommandSpecific4 - Fourth parameter to the sub-command.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATAldleimmediate(MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nellndex)

DESCRIPTION
Performs the IDLE IMMEDIATE ATA command to the storage device connected to the SATA channel indexed
by channelindex.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATASoftResetDevice (MV_SATA_ADAPTER *pAdapter, MV_US8
channellndex, MV_U8 PMPort, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Performs a software reset sequence on the storage device connected to the SATA channel indexed by chan-
nelindex.

The software reset sequence is performed according the software reset sequence defined in the ATA/ATAPI-
6 specification

This function waits for the BSY bit to be '0’, which occurs when FIS 34 is sent from the device to the host
upon software reset completion status.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.
PMPort - An index to the port multiplier’s destination port (equals 0 if no port multiplier available).

registerStruct - Holds a pointer to the ATA register data structure, which contains a dump of ATA registers
upon completion of software reset protocol. If this parameter equals '0’, ATA registers are not dumped.

RETURN
MV_TRUE on success

MV_FALSE on failure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 72 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_BOOLEAN mvStorageDevATAStartSoftResetDevice (MV_SATA_ADAPTER *pAdapter,
MV_U8 channellndex, MV_U8 PMPort)

DESCRIPTION
Performs a software reset sequence on the storage device connected to the SATA channel indexed by chan-
nellndex.

The software reset sequence is performed according the software reset sequence defined in the
ATA/ATAPI-6 specification

This function does not poll for software reset completion status. To perform the polling, use the
mvStoragelsDeviceBsyBitOff() function.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.

PMPort - An index to the port multiplier's destination port (equals 0 if no port multiplier available).

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStoragelsDeviceBsyBitOff (MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nelindex, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Checks if the BSY bit in ATA status is on/off.

If registerStruct is non-zero, then the ATA registers are dumped into the data structure that is pointed to by
registerStruct.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.

registerStruct - A pointer to the ATA registers data structure. If non-zero, then upon exit the function dumps
the ATA registers to it.

RETURN

MV_TRUE when BSY bit is off

MV_FALSE when BSY bit is on (or on failure)
MV_BOOLEAN mvStorageDevExecutePIO (MV_SATA_ADAPTER *pAdapter, MV_US8 channelln-
dex, MV_U8 PMPort, MV_NON_UDMA_PROTOCOL protocolType, MV_BOOLEAN isEXT,

MV_U16_PTR bufPtr, MV_U32 count, MV_STORAGE_DEVICE_REGISTERS *pInATARegs,
MV_STORAGE_DEVICE_REGISTERS *pOutATARegs)

DESCRIPTION
Performs a user-defined non-UDMA command.

Possible commands must belong to a protocol of either non-data, P1O data-in or PIO data-out ATA command.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 73

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

PMPort - An index to the port multiplier’s destination port (equals 0 if no port multiplier available).
protocolType - Protocol of the requested ATA command to perform.

iISEXT - MV_TRUE if the command is an LBA 48-bit extended command.

bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be word (16-bit)
byte aligned).

count - Number of words to transfer from/to buffer.
pINATARegs - ATA registers to be written (includes the command).
pOutATARegs - Holds the result of the PIO command.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Note

When isEXT is MV_TRUE (extended command), then all the 16-bit fields of the ATA registers data
structure are used. Otherwise only the 8 LSB bits are used.

MV_BOOLEAN mvStorageDevSetDeviceType (MV_SATA_ADAPTER *pAdapter, MV_US8 chan-
nellndex, MV_SATA_DEVICE_TYPE deviceType)

DESCRIPTION
Sets the device type of the storage device connected directly to the adapter’'s SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.

deviceType - The deviceType connected.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Note

This function doesn’t query the hardware for the type of storage device, but sets the deviceType field for
the appropriate channel’'s data structure.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 74 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_SATA_DEVICE_TYPE mvStorageDevGetDeviceType (MV_SATA_ADAPTER *pAdapter,
MV_U8 channellndex)

DESCRIPTION
Gets the device type of the storage device connected directly to the adapter’s SATA channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the

Serial ATA Host Adapter.
channellndex - An index to a specific Serial ATA Host Adapter SATA channel.

RETURN
MV_SATA_DEVICE_TYPE_UNKOWN if no storage device connected (or upon failure).

MV_SATA_DEVICE_TYPE_ATA_DISK if a hard drive is connected.
MV_SATA_DEVICE_TYPE_ATAPI_DISK if an ATAPI device connected.
MV_SATA_DEVICE_TYPE_PM if a port multiplier is connected.

| §|| Note

This function doesn’t query the hardware for the type of storage device connected, but returns the value
previously set by the mvStorageDevSetDeviceType() function.

6.5.3.4 Port Multiplier Functions (Polling Driven)

MV_BOOLEAN mvPMDevReadReg (MV_SATA_ADAPTER *pAdapter, MV_U8 channelindex,
MV_U8 PMPort, MV_U32_PTR pValue, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Reads from a port multiplier’s internal register using PIO non-data protocol.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the

Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.
PMPort - Must be OxF (indicated port multiplier’s control port).

pValue - Holds the result of the read (32 bit).

registerStruct - Holds a pointer to the ATA register data structure that contains a dump of ATA registers upon
completion of register read. If this parameter equals '0’, then ATA registers are not dumped.

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 75

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvPMDevWriteReg (MV_SATA_ADAPTER *pAdapter, MV_US8 channelindex,
MV_U8 PMPort, MV_U32 value, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Writes a value to the port multiplier’s internal register using PIO non-data protocol.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channelindex - An index to a specific Serial ATA Host Adapter SATA channel.
PMPort - Must be OxF (indicated port multiplier’s control port).
value - Holds the value to be written to the register (32 bit).

registerStruct - Holds a pointer to the ATA register data structure that contains a dump of ATA registers upon
completion of register write. If this parameter equals '0’, then ATA registers are not dumped.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvPMDevEnableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_U8
channellndex, MV_U8 PMPort)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on a port multiplier’s specific SATA
channel.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

PMPort - Holds the required port multiplier’s SATA channel number.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvPMDevEnableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter, MV_U8
channelindex, MV_U8 PMNumOfPorts, MV_U16_PTR bitmask)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on all port multiplier's SATA channels.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 76 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

PMNumOfPorts - Holds the number of device side SATA channels that the port multiplier supports.

bitmask - Pointer to 16-bit data container that holds a bitmask of '1’ when the relevant port multiplier’s device
port staggered spinup operation was successful.

RETURN
MV_TRUE on success
MV_FALSE on failure

6.5.3.5 Queuing Asynchronous ATA Commands

MV_QUEUE_COMMAND_RESULT mvSataQueueCommand(MV_SATA_ADAPTER *pAdapter,
MV_U8 channellndex, MV_QUEUE_COMMAND_INFO *pCommandInfo)

DESCRIPTION
Queue UDMA and non-UDMA commands to Core Driver commands queue for a given channel.
INPUT

pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter SATA channel.

pCommandinfo - A pointer to an MV_QUEUE_COMMAND_INFO data structure that holds the parameters of
the ATA command to add to the commands queue.

RETURN
MV_QUEUE_COMMAND_RESULT_OK - ATA command is queued successfully.

MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED - ATA command queueing failed
because queuing mode was not enabled. (the API function mvSataEnableChanne lDma was not called suc-
cessfully) or this mode was disabled due to an error.)

MV_QUEUE_COMMAND_RESULT_FULL - Command queueing failed because the commands queue is full.

MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS - Command queueing failed because it tried to
queue a 48-hit LBA-feature-set-compliant ATA command on a 28-bit LBA-feature-set-compliant storage
device.

MV_QUEUE_COMMAND_RESULT_BAD_PARAMS - UDMA command queueing failed due to bad parame-
ters passed to function.

| §|| Note

Itis recommended that the IAL assign the value '0’ on the MV_QUEUE_COMMAND_INFO data structure
(memset operation) before filling in the required parameters.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 77

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

6.5.4 Interrupt Service Routine

MV_BOOLEAN mvSatalnterruptServiceRoutine (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
This function is an interrupt service routine that is called upon receipt of an interrupt from a Serial ATA Host
Adapter.

This routine reads Status registers from the Serial ATA Host Adapter and performs the appropriate interrupt
service routine function by calling the mvSataCommandCompletionCal IBack and mvSataEventNotify
functions.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

RETURN
MV_TRUE - If there was a real interrupt for the adapter.

MV_FALSE - If there was no real interrupt for the adapter.

MV_BOOLEAN mvSataMaskAdapterinterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Masks all interrupts generated from an Serial ATA Host Adapter.

Before masking the interrupts, this functions stores the value of the interrupt mask register in the
interruptMaskReq field in the pAdapter data structure.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataUnmaskAdapterinterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Unmasks all interrupts generated from an Serial ATA Host Adapter.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

RETURN
MV_TRUE on success

MV_FALSE on failure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 78 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
Detailed CORE Driver Implemented APl and Data Structures

MV_BOOLEAN mvSataSetinterruptScheme (MV_SATA_ADAPTER *pAdapter,
MV_SATA_INTERRUPT_SCHEME interruptScheme)

DESCRIPTION
Modifies interrupt scheme.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

interruptScheme - A parameter containing the required interrupt scheme.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataCheckPendinglInterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Checks if an interrupt is pending. If there is a pending interrupt, then this function masks adapter interrupts
and returns MV_TRUE.

This function must be used only when the interrupt scheme is set to MV_SATA_INTERRUPT_IN_TASK.
INPUT

pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

RETURN
MV_TRUE if there a pending interrupt
MV_FALSE if there is no pending interrupt

MV_BOOLEAN mvSata60X1B2CheckDevError(MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nellndex)

DESCRIPTION

Checks if the drive reported device errors. The 88SX60x1 B2 may not issue an error interrupt when the
device error is reported after transferring part of the data. This function must be called at regular intervals
(e.g., 0.5 seconds).

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - Index to a specific Serial ATA Host Adapter channel.

RETURN
MV_TRUE if a device error is reported, and MV_FALSE otherwise.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 79

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

6.6 System-Dependent Header File (mvOs.h)

6.6.1 Types and Defines

6.6.1.1 Data Types (User-Implemented)
MV_VOID - Void
MV_U32 - Unsigned 32-bit
MV_U16 - Unsigned 16-bit
MV_U8 - Unsigned 8-bit
MV_VOID_PTR - Pointer to void
MV_U32_PTR - Pointer to unsigned 32-bit
MV_U16_PTR - Pointer to unsigned 16-bit
MV_U8_PTR - Pointer to unsigned 8-bit
MV_CHAR_PTR - Pointer to string
MV_BUS_ADDR_T - Type that makes it possible for CPU to access PCl addresses
MV_CPU_FLAGS - Type that makes it possible for CORE driver to save and restore CPU flags

6.6.1.2 Defines (User-Implemented)
MV_CPU_WRITE_BUFFER_FLUSH() - Macro for flushing CPU write buffer.
MV_CPU_TO_LE16 (x) - Macro for converting 16-bit from CPU endianess to Little Endian.
MV_CPU_TO_LE32 (x) - Macro for converting 32-bit from CPU endianess to Little Endian.
MV_LE16_TO_CPU (x) - Macro for converting 16-bit from Little Endian to CPU endianess.
MV_LE32_TO_CPU (x) - Macro for converting 32-bit from Little Endian to CPU endianess.

MV_REG_WRITE_BYTE (base, offset, value) - Macro for writing byte to Serial ATA Host Adapter internal
register.

MV_REG_WRITE_WORD (base, offset, value) - Macro for writing word (16-bit) to Serial ATA Host Adapter
internal
register.

MV_REG_WRITE_DWORD (base, offset, value) - Macro for writing dword (32-bit) to Serial ATA Host
Adapter internal
register.

MV_REG_READ_BYTE (base, offset) - Macro for reading a byte from Serial ATA Host Adapter internal reg-
ister.

MV_REG_READ_WORD (base, offset) - Macro for reading a word (16-bit) from Serial ATA Host Adapter
internal register.

MV_REG_READ_DWORD (base, offset) - Macro for reading a dword (32-bit) from Serial ATA Host Adapter
internal
register.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 80 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
System-Dependent Header File (mvOs.h)

6.6.2 Data Structures

6.6.2.1 MV_OS_SEMAPHORE (User-Implemented)

System-dependent implementation defined in the system-dependent header file (mvOs.h).

6.6.2.2 Command Completion and Event Notification
(User-Implemented)

MV_BOOLEAN mvSataCommandCompletionCallBack (MV_SATA_ADAPTER *pAdapter,
MV_U8 channellindex, MV_COMPLETION_TYPE completionType, MV_VOID_PTR *commandID,
MV_U16 errorCause, MV_U32 timeStamp, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
This callback function is used by the CORE driver to indicate a command completion event.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

channellndex - An index to a specific Serial ATA Host Adapter channel.

completionType - Equals MV_COMPLETION_TYPE_NORMAL if completion is hormal with no errors,
MV_COMPLETION_TYPE_ERROR if completion is erroneous, or MV_COMPLETION_TYPE_ABORT if
completion is due to an abort request (due to previously called mvSataFlushDmaQueue function with flush-
Type equals FLUSH_TYPE_CALLBACK as a parameter to it).

commandID - The command identifier as it is passed to the functions mvSataQueueUdmaCommand/
mvSataQueueCommand when the command has been issued.

errorCause - Value indicating the Error Cause register in the relevant SATA channel (relevant only for UDMA
commands).

timeStamp - The elapsed time it took the hardware to execute the command. (Field is taken from the
response queue entry, relevant only for UDMA commands).

registerStruct - If the completion equals MV_COMPLETION_TYPE_ERROR (command completed with
errors), this structure holds the register values from the storage device’s command block registers.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Note

See the Serial ATA Host Adapter datasheet for further information on a specific SATA channel Error Cause
register.

MV_BOOLEAN mvSataEventNotify (MV_SATA_ADAPTER *pAdapter, MV_EVENT_TYPE
eventType, MV_U32 paraml1, MV_U32 param?2)

DESCRIPTION
This callback function is called when the CORE driver needs to notify the IAL of a specific event.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 81

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure, which holds all information for accessing the
Serial ATA Host Adapter.

eventType - Equals MV_EVENT_TYPE_ADAPTER_ERROR in the case of an error in the Serial ATA Host
Adapter or equals MV_EVENT_TYPE_SATA_CABLE in the case of a disconnect/connect of a storage device
to a SATA channel or MV_EVENT_TYPE_SATA_ERROR in case SATA link error or ATA device error.

paraml - If eventType is MV_EVENT_TYPE_ADAPTER_ERROR, this parameter holds the PCI Cause regis-
ter read from the Serial ATA Host Adapter. If eventType is MV_EVENT_TYPE_SATA_CABLE, this parameter
equals '0’ in the case of a disconnect event notification, or equals "1’ in the case of a connect event notifica-
tion. If the eventType is MV_EVENT_TYPE_SATA_ERROR, this parameter is
MV_SATA_RECOVERABLE_COMMUNICATION_ERROR if the SATA link error is recoverable,
MV_SATA_UNRECOVERABLE_COMMUNICATION_ERROR if the SATA link error is unrecoverable of
MV_SATA_DEVICE_ERROR if ATA device error occurred.

param? - If eventType is MV_EVENT_TYPE_ADAPTER_ERROR, this parameter is not in use. If eventType
equals MV_EVENT_TYPE_SATA_CABLE or MV_EVENT_TYPE_SATA_ERROR, this parameter holds the
index of the SATA channel on which the connect/disconnect/error event.

RETURN
MV_TRUE on success

MV_FALSE on failure

| §|| Note

When this function is called with MV_EVENT_TYPE_SATA_ERROR, and paraml is
MV_SATA_UNRECOVERBALE_ERROR, then the IAL is responsible for doing the error recovery. This
recovery involves disabling the EDMA, flushing commands, doing hard reset, then restarting the channel.

When MV_SATA RECOVERABLE_ERROR or MV_SATA DEVICE_ERROR events are received, the
IAL shouldn’t be involved in the error recovery process, since it is performed automatically by the
hardware or by the CORE driver.

6.6.2.3 System Routines (User-implemented)

MV_BOOLEAN mvOsSemiInit (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Initializes a semaphore.

INPUT

semaphore - A pointer to an MV_OS_SEMAPHORE data structure that holds semaphore information to be
initialized.

RETURN

MV_TRUE on success

MV_FALSE on failure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 82 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
System-Dependent Header File (mvOs.h)

MV_BOOLEAN mvOsSemTake (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Locks a semaphore.

INPUT
semaphore - A pointer to an MV_OS_SEMAPHORE data structure.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvOsSemRelease (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Unlocks a semaphore.

INPUT
semaphore - A pointer to an MV_OS_SEMAPHORE data structure.

RETURN
MV_TRUE on success

MV_FALSE on failure

void mvMicroSecondsDelay (MV_SATA_ADAPTER *pAdapter, MV_U32 delay)

DESCRIPTION
Delay function in micro-seconds resolution.

INPUT
pAdapter - A pointer to the adapter’s data structure.

delay - Number of micro-seconds to delay.

RETURN
N/A

6.6.2.4 Logger API

MV_BOOLEAN mvLogRegisterModule(MV_U8 moduleld, MV_U8 filterMask, char* name);

DESCRIPTION

This functions registers the module with the logger. Each module in the driver must provide a unique module
identifier for the registration. It is recommended to call the function prior to module initialization, otherwise the
log messages issued prior to calling this function won't be seen.

INPUT
moduleld - The module identifier.

filterMask - The filter mask for logging.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 83

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

name- Pointer to the module name. The module name string is not copied by the logger so the caller must
not free the memory containing the string.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvLogSetModuleFilter(MV_U8 moduleld, MV_U8 filterMask)

DESCRIPTION
This function defines the new log filter for the registered module.

INPUT
moduleld - The module identifier.

filterMask - The new filter mask for logging.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_U8 mvLogGetModuleFilter(MV_U8 moduleld)

DESCRIPTION
This function returns log filter settings for the registered module.

INPUT
moduleld - The module identifier.

RETURN
Module logging filter value. For unregistered module, this function returns 0.

void mvLogMsg(MV_U8 moduleld, MV_U8 type, char* format,...)

DESCRIPTION
This function prints the log message of a specified type and format. The message is printed only if the module
is registered in the logger and the message type matches the log filter settings for the current module.

INPUT
moduleld - The module identifier.

type - Log message type
format - Formatted string

RETURN
None

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 84 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
System-Dependent Header File (mvOs.h)

6.6.2.5 Interrupt Coalescing in I/O Granularity API

MV_BOOLEAN mvSataEnableloGranularity (MV_SATA_ADAPTER* pAdapter, MV_BOOLEAN
enable)

DESCRIPTION
Enables and disables interrupt coalescing in 1/0 granularity for the specific SATA adapter. If it is enabled, the
function masks all channel interrupts and enables I/O granularity coalescing interrupts.

INPUT
pAdapter - Pointer to the adapter data structure.

enable - MV_TRUE to enable interrupt coalescing in I/O granularity, MV_FALSE to disable interrupt coa-
lescing in I/O granularity

RETURN
MV_TRUE on success

MV_FALSE on failure
6.6.2.6 Channel-to-Channel Communication Mode Functions

MV_BOOLEAN mvSataC2CInit(MV_SATA_ADAPTER *pAdapter, MV_U8 channelindex,
MV_SATA_C2C_MODE mvSataC2CMode, MV_VOID_PTR mvSataC2CCallBack)

DESCRIPTION
Initializes SATA channel for Target Mode communication.

INPUT
pAdapter - pointer to the adapter data structure.

channellndex - index of the specific SATA channel.
mvSataC2CMode - the channel role in Target Mode communication: target or initiator.
mvSataC2CCallBack - callback function to call on target mode communication event.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataC2CStop (MV_SATA_ADAPTER *pAdapter, MV_US8 channelindex)

DESCRIPTION
Disables target mode for SATA channel.

INPUT
pAdapter - pointer to the adapter data structure.

channellndex - the index of the specific SATA channel

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 85

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSataC2CSendRegisterDeviceToHostFIS (MV_SATA_ADAPTER *pAdapter,
MV_US8 channelindex, MV_U8 pmPort, MV_BOOLEAN blinterrupt, MV_U8
msg[MV_C2C_MESSAGE_SIZE])

DESCRIPTION
Sends Register Device to Host FIS on specific SATA channel.

INPUT
pAdapter - pointer to the adapter data structure.

channelindex - the index of the specific SATA channel.
pmPort - Port multiplier port number.
binterrupt - determines whether to generate the interrupt on the receiver side.

msg - message containing 10 bytes of user data, which is reflected in ATA register on the receiver channel.

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataC2CActivateBmDma (MV_SATA_ADAPTER *pAdapter, MV_US8 chan-
nelindex, MV_U8 pmPort, MV_U32 prdTableHigh, MV_U32 prdTableLow, MV_UDMA_TYPE
dmaType)

DESCRIPTION
Activates Bus Master DMA for the specific SATA channel.

INPUT
pAdapter - pointer to the adapter data structure.

channellindex - the index of the specific SATA channel.
pmPort - Port Multiplier port number.

prdTableHigh - the upper 32-bit of PRD table address.
prdTableLow - the lower 32-bit of PRD table address.
dmaType - DMA operation type (read or write).

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataC2CResetBmDma (MV_SATA_ADAPTER *pAdapter, MV_U8 channelin-
dex)

DESCRIPTION
Resets Bus-Master DMA for the specific SATA channel.

INPUT
pAdapter - pointer to the adapter data structure.

channellndex - the index of the specific SATA channel.

RETURN
MV_TRUE on success

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 86 Document Classification: Proprietary Information July 26, 2005, Preliminary

Core Driver
System-Dependent Header File (mvOs.h)

MV_FALSE on failure

typedef MV_BOOLEAN (*C2CCallBack_t)(struct mvSataAdapter * pAdapter, struct
mvSataChannel * pChannel, MV_C2C_EVENT_TYPE event, MV_U32 msgSize, MV_U8* msgQ);

DESCRIPTION
This is a user-implemented callback function, which is executed upon target mode Register device to host
FIS reception, Bus Master DMA transfer completion, or communication error.

INPUT

pAdapter - pointer to the adapter data structure.

pChannel - pointer to the SATA channel data structure.

event - target mode communication event which could be one of the following:

- MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_DONE: Register device to host FIS has been
successfully received.
- MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_ERROR: Register device to host FIS transfer error.
- MVv_C2C_BM_DMA_DONE: Bus Master DMA transaction succeeded.
- MV_C2C_BM_DMA_ERROR: Bus Master DMA data transfer error succeeded.
msgSize - message buffer size. If message buffer is unavailable, equals ' 0'.

msg - message buffer which contains either 10 bytes user data in the case of
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS, otherwise equal to NULL.

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 87

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

Section 7. SCSI to ATA Translation Layer

7.1 Introduction

The SCSI to ATA Translation Layer (SAL) driver is a software layer that is operating system and architecture inde-
pendent. The functionality of this layer is to translate SCSI commands into ATA commands and vice versa. It can
be used as a sub-component of an OS-specific driver that is layered under the OS SCSI sub-system.

7.2 Architecture

This layer is built on the CORE driver layer and the Common Intermediate Application layer. From the upper side,
it provides an entry point that handles SCSI commands. The upper IAL components are responsible for the
adapter management, which involves initializing the adapter, SATA channels, SATA drives, handling hot-plug
events etc. Also, several OS services are needed by this layer mainly for messages logging. These services are
provided by the OS layer that is integrated with the CORE driver.

7.3 SAL APl Summary

mvSataScsi InitAdapterext() Initializes the SAL adapter data structure extension.
mvSataExecuteScsiCommand() Executes SCSI commands.
mvSataScsiPostIntService() Handles split commands.
mvSataScsiSetDriveReady() Notifies the SAL about connected/disconnected drives.
mvSataScsiNotifyUA(Q) Notifies the SAL about Unit Attention conditions.

7.4 SAL SCSI Characteristics

7.4.1 Implementation Standards

The SAL complies with the following SCSI standards:

1. SCSI-3 Architecture Model (X3.270-199x) (SAM).

2. SCSI-3 Primary Commands (X3.301 - 199x) (SPC).

3. SCSI-3 Block Commands (ANSI NCITS 306-199X)(SBC).

7.4.2 Device Addressing

The following SCSI to ATA device addressing translation scheme holds:
* SATA channel translated to SCSI bus.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 88 Document Classification: Proprietary Information July 26, 2005, Preliminary

SCSI to ATA Translation Layer
SAL SCSI Characteristics

e Port multiplier device port translated to SCSI target.
* SATA drive contains one lun (lun 0).

7.4.3 SCSI Features

7.4.3.1 Unit Attention Condition Reporting

The following events reported separately in the following order:

1. Busreset occurred - Additional sense 29h and additional sense qualifier 2h.

2. Parameters changed - Additional sense 2Ah and additional sense qualifier 1h.

upon power-on or hardware reset the IAL notifies the SAL about unit attention condition, the SAL in turn report the
first event for the first command it receives, and the second event is reported for the consecutive command
(unless the command is INQUIRY or REQUEST SENSE, see SAM for details).

7.4.3.2 Auto-Sense

when command completes with CHECK CONDITION status the SAL reports the sense data automatically, actu-
ally this the only mode supported for reporting sense data, the SAL doesn't store this data for future reporting
using the request sense command

7.4.3.3 Parameters Mode Pages
The following mode pages are supported:

Caching mode page Write cache enable and disable read-ahead fields supported.
Value types supported: Current values, changeable and default.

Control mode page Qerr and unrestricted reordering allowed fields supported.
Values types supported: current and default

7.4.3.4 Relative Addressing

Relative addressing is not supported.

7.4.4 Supported SCSI Commands

Table 2: Supported SCSI Commands

Command SCSI Operation
Code

READ(6) 08h

READ(10) 28h

WRITE(6) OAh

WRITE(10) 2Ah

INQUIRY 12h

TEST UNIT READY 00h

MODE SELECT(6) 15h

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 89

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

Table 2: Supported SCSI Commands (Continued)

Command SCSI Operation
Code

MODE SENSE(6) 1Ah
READ CAPACITY(10) 25h
REQUEST SENSE(6) 03h
VERIFY(6) 13h
VERIFY(10) 2fh
SYNCHRONIZE CACHE(10) 35h
SEEK(10) 2Bh
REASSIGN BLOCKS 07h
WRITE LONG(10) 3Fh

7.5 Internal Implementation

7.5.1 Command Splitting

In some cases a SCSI command is translated into several ATA commands, e.g., when a VERIFY (10) command
with 512 sectors is received for a drive that doesn’t support the ATA command READ VERIFY SECTORS EXT, it
is translated into READ VERIFY SECTORS. But this ATA command is limited to 256 sectors only, so the solution
is to send two commands, each with 256 sectors. When command splitting is required, the SAL sends these ATA
commands one by one in a serial manner, i.e., one command is sent, and when it has been completed by the
CORE drive, the next command is sent.

7.5.2 Control Synchronization

The SAL doesn’t implement any synchronization mechanism to protect its internal data. The IAL is responsible for
doing this. The SAL API functions are not re-entrant and must not be called simultaneously unless they are called
for different adapters.

7.5.3 Buffer Synchronization

A typical SCSI command involves two buffers—data buffer and sense data buffer. The sense data buffer is modi-
fied by the SAL for all SCSI commands. The data buffer is also modified by the SAL for all SCSI commands
except the READ(6), READ(10), WRITE(6), and WRITE(10) SCSI commands. For these commands, data buffers
are always accessed by the hardware DMA. The IAL must take this into consideration when synchronizing buffers
between the CPU'’s cache and the system memory.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 90 Document Classification: Proprietary Information July 26, 2005, Preliminary

SCSI to ATA Translation Layer
SCSI to ATA Commands Translation Table

7.6 SCSIto ATA Commands Translation Table

Table 3: SCSI to ATA Commands Translation

SCSI SCsSI ATA COMMAND(S) NOTES
COMMAND OPCODE
READ(6) 08h READ DMA or READ DMA EXT if CORE drive decides which ATA READ ver-
READ(10) 28h the ATA drive supports Iba48 sion to send—FPDMA, QUEUED, or regular
addressing feature set. READ DMA—depending on the EDMA con-
figuration.
WRITE(6) 0Ah WRITE DMA or WRITE DMA EXT if | CORE drive decides which ATA WRITE ver-
WRITE(10) 2Ah the ATA drive supports Iba48 sion to send—FPDMA, QUEUED, or regular
addressing feature set. WRITE DMA—depending on the EDMA con-
figuration.
INQUIRY 12h No commands Returns information based on ATA IDENTIFY
data cached by the SAL.
TEST UNIT 00h No commands
READY
MODE SELECT(6) | 15h ATA SET FEATURES May be split into multiple commands.
MODE SENSE(6) | 1Ah IDENTIFY DEVICE
READ CAPAC- 25h No commands Returns information based on ATA IDENTIFY
ITY(10) data cached by the SAL.
REQUEST 03h No commands
SENSE(6)
VERIFY(6) 13h READ VERIFY SECTORS or READ | VERIFY(10) may be split into multiple READ
VERIFY(10) 3Fh VERIFY SECTORS EXT if the ATA | VERIFY SECTORS.
drive supports Iba48 addressing fea-
ture set.
SYNCHRONIZE 35h FLUSH CACHE
CACHE(10)
SEEK(10) 2Bh No Commands
REASSIGN 07h No Commands
BLOCKS
WRITE LONG(10) | 3Fh WRITE LONG

7.7 ATA to SCSI Error Translation

When an ATA command is completed with an ATA error, the SAL translates this error into a SCSI error by complet-
ing the SCSI command with MV_SCSI_COMPLETION_ATA_FAILED and setting ScsiStatus to CHECK condition,
then setting the sense buffer with values according to the ATA error type. The ATA drive reports the type of error
by setting a corresponding bit in the ATA Error register when the command is completed.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 91

®

—
[—]
—

M ARVELL®

Software Driver User Manual for Marvell Serial ATA Host Adapters

Table 4:

ATA to SCSI Error Translation

ATA error
code
Abbreviation

ATA Error
Code Name

Bitin the
ATA
Error
Register

SCSI Translation

NM

No Media

1

If the ATA command is READ VERIFY SECTORS(EXT) set the
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA
[QUEUEDI][EXT]..) set the sense key to Unit Attention, and set
the Additional Sense Code to 3Ah (No Media in Device).

MC

Media Changed

If the ATA command is READ VERIFY SECTORS(EXT) set the
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA
[QUEUEDI][EXT]..) set the sense key to Unit Attention, and set
the Additional Sense Code to 3Ah (No Media in Device).

MCR

Media Change
Request

If the ATA command is READ VERIFY SECTORS(EXT) set the
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA
[QUEUEDI][EXT]..) set the sense key to Unit Attention, and set
the Additional Sense Code to 3Ah (No Media in Device).

ABRT

Command
Aborted

If the ATA command is READ VERIFY SECTORS(EXT) or SET
FEATURES set the sense key to Aborted Command and set the
Additional Sense Code to No Sense Code.

Else if the ATA command is DMA command (READ/WRITE DMA
[QUEUEDI[EXT]..) then check the IDNF.

If IDNF is not set, then set the SCSI sense key to ILLEGAL
REQUEST and set the Additional Sense Code to ILLEGAL
BLOCK.

If the IDNF is also set, then set the sense key to Aborted Command
and set the Additional Sense Core to No Sense.

IDNF

Address could
not be found

If the ATA command is READ VERIFY SECTORS(EXT) set the
sense key to Aborted Command and set the Additional Sense
Code to No Sense Code.

Else if the ATA command is DMA command (READ/WRITE DMA
[QUEUEDI][EXT]..) then check the ABRT.

If ABRT is not set, then set the SCSI sense key to ILLEGAL
REQUEST and set the Additional Sense Code to ILLEGAL
BLOCK.

If the ABRT is also set, then set the sense key to Aborted Command
and set the Additional Sense Core to No Sense.

UNC

Uncorrectable
data

If the ATA command is READ VERIFY SECTORS(EXT) or READ
DMA, set the sense key to Medium Error, set the Valid bit to 1,
and set the Information bytes with the LBA Address in the Sense
buffer of the relevant SCSI command.

Else if the ATA command is Write DMA command (WRITE DMA
[QUEUED][EXT]..), this error is called WP(Write Protect). Set
the sense key to Data Protect and set the Additional Sense
Code set to No Sense.

Doc. No. MV-S800188-00 Rev. A

Page 92

CONFIDENTIAL

Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

SCSI to ATA Translation Layer
SAL Integration

Table 4: ATA to SCSI Error Translation (Continued)

ATA error ATA Error Bitin the | SCSI Translation
code Code Name ATA
Abbreviation Error
Register
ICRC CRC error dur- 6 If the ATA command is DMA command (READ/WRITE DMA
ing transfer [QUEUED][EXT]..) set the sense key to Aborted Command and
set the Additional Sense Code to No Sense Code.

E Note

If the ATA error received doesn’t match the above-mentioned cases, set the sense key to Aborted
Command and set the Additional Sense Code to No Sense Code.

7.8 SAL Integration

To integrate the SAL with the IAL, perform the following steps:

1. Register the SAL's logging module (see CORE driver logging module).

2. For Big Endian architectures, add the following line to the mvOs.h file:
#define MV_BIG_ENDIAN_BITFIELD

3. Allocate the MV_SAL_ADAPTER_EXTENSION structure per adapter. This structure is used by the SAL to
hold its context information for a given adapter.

4. Call mvSataScsilnitAdapterExt() to initialize the SAL's data structure for a given adapter.

5. Hook the function mvSataScsiPostiIntService() right after calling the CORE driver
mvSatalnterruptServiceRoutine() function.

6. For each drive, the MV_SAL_ADAPTER_EXTENSION structure contains ATA information gathered from the
ATA Identify Device Command data. Before notifying the SAL that a drive is ready, the IAL should fill in this
information for each drive present. The data prototype for this information is defined in the Common Interme-
diate Application Layer.

7. Call mvSataScsiSetDriveReady() to notify the SAL that a given drive is available and ready to receive
ATA commands or to notify which drive(s) are not available.

8. CallmvSataScsiNotifyUA(Q) to notify the SAL that the SCSI Unit Attention condition is pending for a given
drive. This function should be called after performing power-on or a hardware reset to the drive.

9. Call mvSatakExecuteScsiCommand() to queue SCSI commands.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 93

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

7.9 SAL API

7.9.1

Enumerators

MV_SCSI_COMPLETION_TYPE - This enumerator defines the values used to describe how the SCSI command
is completed by the SAL. For some values the SAL also sets the SCSI command status.

Table 5: Enumerators
Completion Status Description SCSI
Status
INVALID_STATUS Initial value set by SAL. Should not be returned unless unexpected error | N/A
occurred.
SUCCESS Command completed successfully with no errors. GOOD
BAD_SCB Bad SCSI Command Block. Something is wrong with the parameters N/A
passed in this structure (e.g, the data length to transfer doesn’t match the
number of sectors).
BAD_SCSI_COMMAND | Bad parameter in the SCSI CDB. CHECK
CONDITION
ATA FAILED Translated ATA command completer with error. CHECK
CONDITION
QUEUE_FULL No place in the CORE drive commands queue for the translated CHECK
command. CONDITION
NOT READY CORE drive not ready for queuing ATA commands. N/A
ABORTED Command was aborted by the CORE driver. N/A
OVERRUN Returned data less than the data buffer length. GOOD/
CHECK CON-
DITION
UNDERRUN Returned data more than the data buffer length. GOOD/
CHECK CON-
DITION
PARITY_ERROR Command failed due to parity error. CHECK
CONDITION
DISCONNECT Drive was disconnected while processing the command. N/A
NO DEVICE Targeted device not available. N/A
INVALID BUS SCSI bus ID not valid. N/A
BUS_RESET Not Used. N/A
BUSY Not Used. N/A
UA_RESET Command failed with unit attention condition due to bus reset. CHECK
CONDITION
UA_PARAMS_CHANGE | Command failed with unit attention condition and parameters changed. CHECK
D CONDITION

Doc. No. MV-S800188-00 Rev. A

Page 94

CONFIDENTIAL

Document Classification: Proprietary Information

Copyright © 2005 Marvell
July 26, 2005, Preliminary

SCSI to ATA Translation Layer
SAL API

MV_SCSI_COMMAND_STATUS_TYPE - Returned by mvSataExecuteScsiCommand() to describe the flow of
the SCSI command. The values of this enumerator are:

Table 6: Enumerator Values

COMMAND Description

STATUS

COMPLETED SCSI command was completed when it was processed by mvSataExecuteScsiCom-
mand(), and the completion callback function was called.

QUEUED Translated to ATA command(s) that are queued in the CORE driver's commands queue.

FAILED mvSataExecuteScsiCommand() failed to handle this command due to unexpected
error.

QUEUED_BY_IAL |Not used by SAL.

7.9.2 Data Structures

7.9.2.1 MV_SATA_SCSI_CMD BLOCK

This structure contains the input/output and context information of SCS command to be processed by mvSataEx-
ecuteScsiCommand() .-

Description of Fields:
IN MV_U8* ScsiCdb - SCSI command data block buffer

IN MV_U32 ScsiCdbLength - Length in bytes of the CDB (6,10,12,16)
IN MV_U8 bus - SCSI bus

IN MV_U8 target - Target device ID

IN MV_U8 lun - SCSI lun number of the device

IN MV_BOOLEAN useSingleBuffer - True when the data located in the buffer pointed by pDataBuffer (virtual
address). False when the command is READ/WRITE. In this case the dates located in a PRD table.

IN MV_U8 *pDataBuffer - Pointer to the command data buffer

IN MV_U32 dataBufferLength - Length in bytes of the command data buffer

IN MV_U32 PRDTableEntries - Number of entries in the PRD table

IN MV_U32 PRDTableLowPhyAddress - Low 32 bits of the PRD table physical address
IN MV_U32 PRDTableHighPhyAddress - High 32 bits of the PRD table physical address
OouUT MV_U8 ScsiStatus - SCSI status will be written to this field

IN MV_U8* pSenseBuffer - Pointer to the SCSI sense buffer

IN MV_U32 senseBufferLength - Length in bytes of the SCSI sense buffer

OUT MV_U32 senseDataLength - Length in bytes of the generated sense data

OUT MV_U32 dataTransfered - Length in bytes of the data transferred to the data buffer/s

OUT MV_SCSI_COMPLETION_TYPE ScsiCommandCompletion - Translation layer status of the completed
SCSI command callback function called by the translation layer when the SCSI completed.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 95

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

IN mvScsiCommandCompletionCallBack completionCallBack - Callback function to be invoked when the
command is completed.

IN struct mvSalAdapterExtension * pSalAdapterExtension - Pointer to the SAL extension of the adapter.
IN struct mvlALCommonAdapterExtension* plalAdapterExtension - Not used by SAL

MV_VOID_PTR IALData - This field is for the IAL use only.

The following are fields for internal use by the translation layer:

MV_UDMA_TYPE udmaType

MV_QUEUED_COMMAND_TYPE commandType - Used for sense buffer

MV_U32 LowLbaAddress - Used for non-UDMA and for sense buffer

MV_BOOLEAN isExtended

MV_U16 splitCount

MV_U16 sequenceNumber - Used to create a list for commands that need post interrupt service

struct _mvSataScsiCmdBlock *pNext
MV_STORAGE_DEVICE_REGISTERS ATAregStruct

7.9.2.2 MV_SATA_SCSI_CHANNEL_STATS

This structure is used for collecting statistics of the 1/0s sent by the SAL.

The fields of this structure are:

MV_U32 totallOs
MV_U32 totalAccumulatedOutstanding
MV_U32 totalSectorsTransferred

7.9.2.3 MV_SATA_SCSI_DRIVE_DATA

This structure contains the information used by the SAL per SATA drive fields:
MV_BOOLEAN driveReady - Indicates that the drive is ready for receiving ATA commands

ATA_IDENTIFY_INFO identifylnfo - This structure contains information based on the IDENTIFY DATA that
should be set by the IAL

MV_U16_PTR identifyBuffer - Pointer to the buffer to which to write IDENTIFY data
MV_SATA_SCSI_CHANNEL_STATS stats - I/Os statistics

MV_BOOLEAN UAConditionPending - If Unit Attention Condition is pending
MV_U32 UAEvents - Unit Attention events to report

7.9.24 MV_SAL_ADAPTER_EXTENSION

This structure contains the information used by the SAL for a given adapter.

The fields of this structure are:
MV_SATA_ADAPTER *pSataAdapter - Pointer to the CORE driver data structure

MV_SATA_SCSI_CMD_BLOCK *pHead - Head of a linked list of the commands that need service when
mvSataScsiPostiIntService() is invoked

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 96 Document Classification: Proprietary Information July 26, 2005, Preliminary

SCSI to ATA Translation Layer
SAL API

MV_SATA_SCSI_DRIVE_DATA ataDriveData
[MV_SATA_CHANNELS_NUM][MV_SATA_PM_MAX_PORTS] - SATA drive information for each drive

MV_U16 identifyBuffer[MV_SATA_CHANNELS_NUM][MV_ATA_IDENTIFY_DEV_DATA_LENGTH] - Data
buffer for the IDENTIFY command. One buffer is used for each channel, so multiple devices on the same channel
share this buffer.

7.9.3 API Functions

MV_VOID mvSataScsilnitAdapterExt(MV_SAL_ADAPTER_EXTENSION *pAdapter-
Ext,MV_SATA_ADAPTER* pSataAdapter)

DESCRIPTION
Initializes the SAL data structure.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

pSataAdapter - Pointer to MV_SATA_ADAPTER data structure, which holds information to access the Serial
ATA Host Adapter device.

MV_VOID mvSataScsiPostIintService(MV_SAL_ADAPTER_EXTENSION *pAdapterExt)

DESCRIPTION
This function should be called after calling the CORE driver ISR. When the SCSI command is split into multi-
ple ATA commands, this function sends the next ATA command when one has been completed.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for given adapter.

MV_SCSI_COMMAND_STATUS TYPE mvSataExecuteScsiCom-
mand(MV_SATA_SCSI_CMD_BLOCK *pMvSataScsiCmdBlock)

DESCRIPTION
This function handles execution of a given SCSI command.

INPUT
pMvSataCmdBlockAdapterExt - Pointer to SCSI COMMAND BLOCK structure, which contains the informa-
tion of the SCSI command to translate.

RETURN
MV_SCSI_COMMAND_STATUS_TYPE - How the command was processed

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 97

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_VOID mvSataScsiSetDriveReady(MV_SAL_ADAPTER_EXTENSION *pAdapterExt, MV_U8
channellndex, MV_U8 PMPort, MV_BOOLEAN isReady)

DESCRIPTION
Informs the SAL that SATA drive(s) are ready/not ready.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

channellndex - Channel number where the drive is connected.

PMPort - Port number where the drive is connected. When isReady is MV_FALSE a failure of FFh indicates
that all the drives on the given channel are not ready.

isReady - If equals MV_TRUE then the drive is ready. When MV_FALSE then drive(s) are not ready.

MV_VOID mvSataScsiNotifyUA(MV_SAL_ADAPTER_EXTENSION *pAdapterExt, MV_U8 chan-
nellndex, MV_U8 PMPort)

DESCRIPTION
Informs the SAL that SATA drives should have Unit Attention due to power-on or hardware reset.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

channellindex - Channel number where the drive is connected.

PMPort - Port number where the drive is connected.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 98 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Introduction

Section 8. IAL Common Layer

8.1 Introduction

The Common IAL component is a software package which is operating system and architecture -independent. It
has two main functionalities—it provides the set of helper API functions to the system-dependent IAL layer and
manages state machines of the adapter and SATA channel.

The Common IAL component API and data structures are divided into three categories:
e Common IAL implemented helper APl and data structures: Includes the helper routines for the system-

dependent IAL.

e Common IAL implemented state machine APl and data structures: Includes the functions and data struc-
tures used in the adapter and channels’ state machine.

e Common IAL User-implemented API: Includes several functions and a single data structure which must be
implemented by the user in the system-dependent IAL layer.

The Common IAL layer provides the following functionality:

* Triggers SATA adapter initialization sequence through the Core Driver API.

* Manages a state machine for the adapter and its channels to provide an asynchronous SATA adapter and
SATA channels initialization process that is completely transparent to OS.

* Interacts with SAL to provide the representation of SATA connected equipment in SAL.

* Interacts with system-dependent IAL layer to represent the SATA adapters and SATA equipment connected
to their channel to user application or OS SCSI subsystem.

* Notifies system-dependent IAL about changes in the status of SATA connected equipment and serves as a
wrapper between system-dependent IAL and SAL component.

* Access to TWSI devices connected to the 885X6041, 88SX6042, 88SX6081, and 885X7042, adapter TWSI
bus.
This document is divided into the following sections:

e Common IAL basic design and integration guidelines: Describes the basic design guidelines for Common
IAL.

* Common IAL state machine for adapter and channels: Describes a Common IAL state machine for the
adapter and its channels.

e Common IAL APl Summary: Categorizes the Common IAL data structure and API being used.

8.2 Common IAL Basic Design and Integration Guidelines

The purpose of this section is to describe basic design and integration guidelines for users who integrate part or all
of the Common IAL into their software drivers.

8.2.1 Initialization Latency and State Machines

Serial ATA devices such as disk drives and Port Multipliers may not initialize immediately. Usually Port Multipliers
initialize faster than disk drives, since they don’t have any mechanical parts. It usually takes few seconds for a disk
drive to initialize, until it reports about the device’s malfunctions. On other hand, operating systems such as Linux

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 99

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

and Windows require the device driver to avoid any delays longer than ~10 milliseconds, since longer delays
affect OS system performance and smoothness, and occasionally may cause certain management processes to
timeout.

To resolve this issue, the Common IAL component provides a mechanism of asynchronous SATA adapter and
SATA channels initialization that is completely transparent to the OS. The initialization sequence is state-machine-
based and timer-driven, so channels initialization is done in the background and enables the other OS compo-
nents to continue running.

8.2.2 System Timer

The state machines of the adapter and channel are timer-driven, thus every adapter instance requires a single,
periodic, low-resolution OS timer. The timer period default value must be set to 0.5 seconds, unless modified by
the user.

When a channel state requires a longer timeout period, timer events are accumulated until the timer expiration
threshold is reached.

8.2.3 Common IAL Software Command Queue
The Common IAL optionally maintains a SCSI command software queue, which contains the SCSI commands
submitted by the OS before channel initialization has been completed.

When channel initialization has been completed, all SCSI commands in the queue are returned to the OS with
BUSY status, which causes the OS to retry the commands.

| §I| Note

For Windows OS the command queue is not required. In this case when channel initialization sequence
has not completed, the SCSI command is completed immediately and returned to OS with BUSY status.

8.3 Common IAL Function API and Data Structures
Summary

The following two sub-sections summarize the CORE driver API and data structures, which are categorized in
groups according to their functionality.

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 100 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Common IAL Function API and Data Structures Summary

Figure 6: Common IAL APl and Data Structures Block Diagram

System dependent IAL Common IAL User
implemented functions

IAL state machine related
API
IAL helper functions API
IAL user implemented API

Common IAL
Functions

Data Structures

SAL API

Core Driver API

Core Driver

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 101

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

8.3.1 API Summary of Common IAL Functions

Common IAL helper functions

mvParseldentifyResult Parses IDENTIFY command result.
mvGetSataDeviceType Determines SATA device type.
mvInitSataDisk Initializes SATA disk drive.
mvGetPMDevicelnfo Retrieves Port Multiplier information.

Common IAL state-machine-related functions

mvAdapterStartinitialization Begins adapter and state machine initialization.
mvRestartChannel Restarts SATA channel.

mvStopChannel Stops SATA channel.

mvPMHotPlugDetected Notifies Common IAL about PM hot plug.
mvIALTimerCallback Common IAL system timer callback.
mvCommandCompletionErrorHandler Notifies Common IAL about command completion error.
mvExecuteScsiCommand Wrapper for SAL mvSataExecuteScsiCommand.

Common IAL user-supplied routines

IALInitChannel Allocates and initializes SATA channel data structures.

IALReleaseChannel Frees SATA channel data structure.

IALBusChangeNotify Notifies OS about changes in channel status.

IALConfigQueuingMode Configures SATA channel EDMA queuing mode.

Common IAL TWSI devices access

mvSataTWSIMasterInit Initializes 88SX60X1 TWSI master.

mvSataTWSIMasterReadByte Reads a byte from a TWSI slave connected to the
88SX60X1 TWSI bus.

mvSataTWSIMasterWriteByte Writes a byte to a TWSI slave connected to the 88SX60X1
TWSI bus.

8.3.2 Common IAL Data Structure Summary

Data structures modified by IAL and CORE drive:
MV_IAL_COMMON_CHANNEL_EXTENSION Data structure presenting Common IAL channel related

data.
MV_IAL_COMMON_ADAPTER_EXTENSION Data structure presenting Common IAL adapter related
data.
Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 102 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Common IAL Internal State Diagrams

8.4 Common IAL Internal State Diagrams
State Diagram Conventions
Table 7 shows the general layout for each entry of the adapter and channel state diagrams described in Section

8.4.1 and Section 8.4.2.

Table 7: State Table Description

State name or identifier Explanation of the state
Branch condition 0 -> |Next State 0
Branch condition 1 -> |Next State 1
Branch condition 2 -> |Next State 2
Branch condition 3 -> |Next State 2

8.4.1 Common IAL Adapter State Diagram

ADAPTER_INITIALIZING Initial adapter state
Staggered spin-up for SATA Il -> |ADAPTER_READY
adapter done

SATA | adapter -> |ADAPTER_READY

Error: Adapter data structure not -> |ADAPTER_FATAL_ERROR
initialized

ADAPTER_READY Working adapter state.

When the adapter changes its state from
ADAPTER_INITIALIZING to ADAPTER_READY,
all channels’ states are set to
CHANNEL_DISCONNECTED and the channel
initialization algorithm is triggered.

No branch to other states

ADAPTER_FATAL_ERROR The fatal error occurred during the adapter
initialization.

No branch to other states

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 103

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

8.4.2 Common IAL Channel State Diagram

CHANNEL_NOT_CONNECTED Channel is not connected or channel initialization
failed.

The driver does not maintain SCSI command
gueue in this state.

Storage device connection detected.|-> | CHANNEL_CONNECTED

CHANNEL_CONNECTED Channel is connected to adapter. Start SRST for
channel in Gen. Il and set polling timer to
31 seconds.
1. SRST write register failed. -> |CHANNEL_NOT_CONNECTED
2. Channel connected. Start SRST. |-> |CHANEL_IN_SRST
Set timeout to 31 seconds.

CHANNEL_IN_SRST Check every 0.5 seconds if the device BSY bit is
cleared. If so, start device detection.

1. Device BSY bitis set and 31 -> |CHANNEL_NOT_CONNECTED
sec. timeout has expired.

2. Device BSY bitis set but timeout |-> |CHANNEL_IN_SRST
has not expired.

3. Device BSY bit is clear and Port
Multiplier (PM) device detected.
Configure PM. Proceed with PM
staggered spin-up for all PM
ports.

4. Device BSY bit is clear and -> |CHANNEL_READY
SATA disk drive is detected.
Initialize SATA disk drive.
Enable channel EDMA.

5. Any failure in 3 or 4. -> |CHANNEL_NOT_CONNECTED

|
\

CHANNEL_PM_STAGGERED_SPIN_UP

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 104 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Common IAL Internal State Diagrams

CHANNEL_PM_STAGGERED_SPIN_UP PM device is detected on channel. Initiate
staggered spin-up for all PM ports
1. Staggered spin-up failed. -> |CHANNEL_NOT_CONNECTED
Staggered spin-up successfully com- -> |CHANNEL_PM_SRST_DEVICE

pleted. Detect PM ports on which the
devices are present. Set index of first
PM connected device being initialized.
Start device SRST. Set channel timer to
31 sec.

CHANNEL_PM_SRST_DEVICE PM device is detected and staggered spin-up is
completed. The channel remains in this state until
all devices connected to PM are initialized.

1. BSY bitis clear on PM con- -> |CHANNEL_PM_SRST_DEVICE
nected device (disk drive) found
in SRST. Initialize disk drive.
There are more devices con-
nected to PM. Start SRST on
next device. Set channel timer to
31 sec.

2. BSY bitis clear on PM con- -> |CHANNEL_READY
nected device (disk drive) found
in SRST. Initialize disk drive.
There are no more devices con-
nected to PM.

Enable channel EDMA

3. Failed to communicate with PM |-> |CHANNEL_NOT_CONNECTED
device.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 105

®

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

CHANNEL_READY Channel and all attached devices are
initialized. Flush SCSI command queue for
this channel if one is being maintained. All
commands are returned with BUSY status
and OS resubmits them later.

If the channel has a PM connected to it and asyn-
chronous natification is not supported by PM, start
polling the PM Error information GSCR[33] regis-
ter every 0.5 sec.
1. Channel disconnect -> |CHANNEL_NOT_CONNECTED
detected.
2. PM hot plug is detected, either
by polling or by receiving the
event from Core Driver.

v

CHANNEL_PM_HOT_PLUG

CHANNEL_PM_HOT_PLUG The channel remains in this state until the chan-
nel's EDMA command queue on this channel is
empty.

If the queue is empty, restart the channel by set-
ting its state to CHANNEL_CONNECTED. The
channel is being restarted.

1. EDMA command queue is not |-> |CHANNEL_PM_HOT_PLUG
empty.

2. EDMA command queue is -> |CHANNEL_CONNECTED
empty.

8.5 Detailed IAL Function APl and Data Structures

The following sections describe the function API and data structures in detail.

8.5.1 Detailed Common IAL Data Structures

8.5.1.1 Enumerators and Defines

MV_ADAPTER_STATE: Adapter state enumerator for either ADAPTER_INITIALIZING, ADAPTER_READY, or
ADAPTER_FATAL_ERROR

MV_CHANNEL_STATE: Channel state enumerator for either CHANNEL_NOT_CONNECTED,
CHANNEL_CONNECTED, CHANNEL_IN_SRST, CHANNEL_PM_STAGGERED_SPIN_UP,
CHANNEL_PM_SRST_DEVICE, CHANNEL_READY, or CHANNEL_PM_HOT_PLUG.

MV_IAL_ASYNC_TIMER_PERIOD: Timer period define in milliseconds (equals to 500).

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 106 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Detailed IAL Function APl and Data Structures

MV_IAL_SRST_TIMEOUT: Software reset timeout expiration value in milliseconds (equals to 31000).

8.5.1.2 Data Structures

MV_IAL_COMMON_CHANNEL_EXTENSION
MV_U8 PMnumberOfPorts

Number of ports in Port Multiplier if one is connected to current channel.
MV_U16 PMdevsTolnit

Bit mask to enumerate the Port Multiplier connected devices that need further initialization: Bit value of 1
means that a device needs to be initialized.

MV_U8 devInSRST
Indicates a Port Multiplier connected device on which the software reset is in progress.

MV_BOOLEAN completionError
Indicates that SCSI command completion error has occurred on current channel. When the Port Multiplier is
connected to the channel, completionError is equal to MV_TRUE and asynchronous notification is not sup-
ported by the Port Multiplier. The driver checks the change in status of Port Multiplier connected devices
before submitting the next SCSI command.
MV_U8 pmAccessType
Used for Port Multiplier polling mechanism. Indicates the access type to the Port Multiplier registers: Equals
either MV_ATA_COMMAND_PM_READ_REG or MV_ATA_COMMAND_PM_WRITE_REG.
MV_U8 pmReg
Used for Port Multiplier polling mechanism. Stores the Port Multiplier register number to access.
MV_BOOLEAN pmRegAccessInProgress
Indicates that a Port Multiplier register access is pending. This is used to prevent the polling routine from re-
entering the register access. Equal to MV_TRUE if the register access is in progress.
MV_BOOLEAN pmAsyncNotifyEnabled
Indicates that a asynchronous notification is supported by the Port Multiplier connected to this channel.
MV_U32 SRSTTimerThreshold
Stores the timer expiration value of the software reset timer.
MV_U32 SRSTTimerValue
Stores the current timer value of the software reset timer.
MV_VOID_PTR IALChannelPendingCmdQueue
Head of the command queue managed by the Common IAL.

MV_IAL_COMMON_ADAPTER_EXTENSION
MV_SATA_ADAPTER *pSataAdapter
Pointer to the Core Driver adapter data structure.

MV_ADAPTER_STATE adapterState
Current state of the adapter.

MV_CHANNEL_STATE channelState[MV_SATA_CHANNELS_NUM]
Current state of adapter’s channels.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 107

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_IAL_COMMON_CHANNEL_EXTENSION IALChannelExt[MV_SATA_CHANNELS_NUM]
Channels’ extension of Common IAL.

85.2 Common IAL API

8.5.2.1 Common IAL Helper Functions

MV_BOOLEAN mvParseldentifyResult (MV_U16_PTR iden,ATA_IDENTIFY_INFO *pldentifyinfo)

DESCRIPTION
Parses the identify command results, checks that the connected devices can be accessed by the device
EDMA, and updates the ATA drive parameters structure accordingly.

INPUT
iden - pointer to the buffer returned by the ATA IDENTIFY command

pldentifyinfo- pointer to the ATA parameters structure

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_SATA_DEVICE_TYPE mvGetSataDeviceType (MV_STORAGE_DEVICE_REGISTERS
*mvRegs)

DESCRIPTION
Determines the SATA device type according to the values of ATA registers.

INPUT
mvRegs - ATA registers structure

RETURN
MV_SATA_DEVICE_TYPE_UNKNOWN - unknown device type

MV_SATA _DEVICE_TYPE_ATA_DISK - ATA disk drive
MV_SATA DEVICE_TYPE_ATAPI_DISK - ATAPI disk drive
MV_SATA_DEVICE_TYPE_PM - Port Multiplier

MV_BOOLEAN mvinitSataDisk(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channellndex,
MV_U8 PMPort, ATA_IDENTIFY_INFO *pldentifylnfo, MV_U16_PTR identifyBuffer)

DESCRIPTION
Retrieves drive information using ATA IDENTIFY command and initialized disk drive using SET FEATURES
ATA command.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelindex - index of the current channel

PMPort - Port Multiplier port number

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 108 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Detailed IAL Function APl and Data Structures

OUTPUT
pldentifylnfo - pointer to IDENTIFY information structure

identifyBuffer - pointer to IDENTIFY buffer

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvGetPMDevicelnfo(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelln-
dex, MV_SATA_PM_DEVICE_INFO *pPMDevicelnfo)

DESCRIPTION
Retrieves Port Multiplier information such as vendor ID, device ID, product revision, specification revision and
number of ports.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channellndex - index of the current channel

OUTPUT
pPMDevicelnfo - pointer to Port Multiplier information structure

RETURN
MV_TRUE on success

MV_FALSE on failure
8.5.2.2 Common IAL API State-Machine-Related Functions

MV_BOOLEAN mvAdapterStartinitialization(MV_SATA_ADAPTER *pSataAdapter,
MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,
MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION

Adapter found in ADAPTER_INITIALIZING state. Starts adapter initialization: State-machine-related data
structures are initialized for the adapter and its channels. After successful staggered spin-up operation the
adapter state is changed to ADAPTER_READY.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

ialExt - Common IAL adapter data structure allocated by system-dependent IAL
scsiAdapterExt - pointer to SAL extension

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 109

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

void mvRestartChanne(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt, MV_US8 channelin-
dex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt, MV_BOOLEAN bBusReset)

DESCRIPTION

Restarts the initialization sequence for current channel. The channel state is changed to
CHANNEL_CONNECTED, the OS is notified about the change in the bus and the channel initialization is
started.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channellndex - channel number
scsiAdapterExt - pointer to SAL extension

bBusReset - Equals MV_TRUE if the function was called upon bus reset.

RETURN
None

void mvStopChanne(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt, MV_US8 channelln-
dex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
Stops current channel. Channel state is changed to CHANNEL_NOT_CONNECTED and the OS is notified
about the change in the bus. All channel data structures are released.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelindex - channel number

scsiAdapterExt - pointer to SAL extension

RETURN
None

void mvPMHotPlugDetected(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt, MV_US8 chan-
nelindex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
Called when Port Multiplier device hot plug is detected. If the channel has no outstanding EDMA commands,
the channel state is changed to CHANNEL_PM_HOT_PLUG. Otherwise, the channel is restarted.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channellndex - channel number

scsiAdapterExt - pointer to SAL extension

RETURN
None

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 110 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Detailed IAL Function APl and Data Structures

MV_BOOLEAN mvIALTimerCallback(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,
MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
The system-dependent IAL must call this function from its timer callback routine. The functions of the adapter
and channels’ state machine are executed in every call of this function.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

scsiAdapterExt - pointer to SAL extension

RETURN
MV_TRUE on success

MV_FALSE on failure

void mvCommandCompletionErrorHandler(MV_IAL_COMMON_ADAPTER_EXTENSION *ial-
Ext, MV_U8 channellndex)

DESCRIPTION
Called either by the SAL completion or the SMART completion function. Checks whether command failed
because of PM hot plug.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelindex - channel number

RETURN
None

MV_SCSI_COMMAND_STATUS_TYPE mvExecuteScsiCommand(
MV_SATA_SCSI_CMD_BLOCK *pSch, MV_BOOLEAN canQueue)

DESCRIPTION

IAL common layer wrapper of Core Driver mvSataExecuteScsiCommand() function. If the adapter state is not
ADAPTER_READY or the channel is connected but the channel state is not CHANNEL_READY, the current
SCSI command can be either queued in the channel's SCSI commands software queue until the channel ini-
tialization sequence is completed or immediately returned to the OS with adapter BUSY status. If the chan-
nel is in CHANNEL_READY state the SCSI command is passed to the SAL layer.

INPUT
pSchb - SCSI command block structure

canQueue - determines if the IAL can queue this command

RETURN
Return MV_SCSI_COMMAND_STATUS_COMPLETED if the command has been returned to the OS.

Return MV_SCSI_COMMAND_STATUS_QUEUED_BY_IAL if the command has been queued to the chan-
nel software queue.

Otherwise return the result of mvSataExecuteScsiCommand() function call.

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 111

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

8.5.3 Common IAL APl User-Supplied Routines

The system-dependent IAL layer must supply the following functions to the Common IAL:

MV_BOOLEAN IALInitChannel(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelindex)

DESCRIPTION
Allocate and initialize all system-dependent IAL channel data structures.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelindex - channel number

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN IALReleaseChannel(MV_SATA_ADAPTER *pSataAdapter, MV_US8 channellndex)

DESCRIPTION
Release all system-dependent IAL channel data structures.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelindex - channel number

RETURN
None

MV_BOOLEAN IALBusChangeNotify(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelin-
dex)

DESCRIPTION
Notify the OS about the change in the status of the current channel.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelindex - channel number

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN IALConfigQueuingMode(MV_SATA_ADAPTER *pSataAdapter, MV_US8 chan-
nelindex, MV_EDMA_MODE mode, MV_U8 queueDepth)

DESCRIPTION
Performs all system-dependent IAL operations for queuing mode. Then it must call
mvSataConfigedmaMode().

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 112 Document Classification: Proprietary Information July 26, 2005, Preliminary

IAL Common Layer
Detailed IAL Function APl and Data Structures

channellindex - channel number

mode - EDMA mode to configure for the channel. Can be either MV_EDMA_MODE_QUEUED,
MV_EDMA_MODE_NOT_QUEUED or MV_EDMA_MODE_NATIVE_QUEUING

gueueDepth - maximum number of outstanding EDMA commands in queue

RETURN
MV_TRUE on success

MV_FALSE on failure

854 Common IAL TWSI Devices Access

The following functions enable access to TWSI devices attached to the 88SX60X1 TWSI bus.

MV_BOOLEAN mvSataTWSIMasterlnit(MV_SATA_ADAPTER *pSataAdapter)

DESCRIPTION
Initializes 88SX60X1 adapter’s TWSI bus.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

RETURN
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataTWSIMasterReadByte(MV_SATA_ADAPTER *pSataAdapter, MV_U8
twsiDevAddr, MV_U16 address, MV_U8_ PTR data, MV_BOOLEAN addressRange)

DESCRIPTION

Reads a byte from TWSI device.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

twsiDevAddr - Address of the slave device in the TWSI address space
address - The required address within the TWSI device (can be either 8-bit or 16-bit)
data - A pointer to an 8-bit data container that holds the data of the result

addressRange - If MV_TRUE then the TWSI device must be accessed by 16-bit addressing.
If MV_FALSE then the device is accessed by 8-bit addressing (only the 8 LSB bits of the above address
parameter are valid).

RETURN
MV_TRUE on success

MV_FALSE on failure

Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 113

—
[—]
—

MARVELL® Software Driver User Manual for Marvell Serial ATA Host Adapters

MV_BOOLEAN mvSataTWSIMasterWriteByte(MV_SATA_ADAPTER *pSataAdapter, MV_US8
twsiDevAddr, MV_U16 address, MV_U8 data, MV_BOOLEAN addressRange)

DESCRIPTION
Writes a byte to a TWSI device.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

twsiDevAddr - Address of the slave device in the TWSI address space

address - The required address within the TWSI device (can be either 8-bit or 16-bit)

data - The data to be written

addressRange - If MV_TRUE then the TWSI device must be accessed in 16-bit addressing.

If MV_FALSE then the device is accessed by 8-bit addressing (only the 8 LSB bits of the above address
parameter above are valid).

RETURN
MV_TRUE on success

MV_FALSE on failure

Doc. No. MV-S800188-00 Rev. A CONFIDENTIAL Copyright © 2005 Marvell

Page 114 Document Classification: Proprietary Information July 26, 2005, Preliminary

Revision History

Section 9. Revision History

Table 8: Revision History

Document Type Software Document Date
Version # Revision
Initial release Version 3.6.0 A 26-July-05
Copyright © 2005 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. A

July 26, 2005, Preliminary Document Classification: Proprietary Information Page 115

—
—
—

M ARVELL®

Marvell Semiconductor, Inc.

700 First Avenue
Sunnyvale, CA 94089, USA

Tel: 1.408.222.2500
Fax: 1.408.752.9028

www.marvell.com

Worldwide Corporate Offices

Marvell Semiconductor, Inc.
700 First Avenue

Sunnyvale, CA 94089, USA
Tel: 1.408.222.2500

Fax: 1.408.752.9028

Marvell Semiconductor, Inc.
5400 Bayfront Plaza
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500

Marvell Asia Pte, Ltd.

151 Lorong Chuan, #02-05

New Tech Park, Singapore 556741
Tel: 65.6756.1600

Fax: 65.6756.7600

Marvell Japan K.K.

Shinjuku Center Bldg. 44F

1-25-1, Nishi-Shinjuku, Shinjuku-ku
Tokyo 163-0644, Japan

Tel: 81.(0).3.5324.0355

Fax: 81.(0).3.5324.0354

Marvell Semiconductor Israel, Ltd.
6 Hamada Street

Mordot HaCarmel Industrial Park
Yokneam 20692, Israel

Tel: 972.(0).4.909.1500

Fax: 972.(0).4.909.1501

Marvell Semiconductor Korea, Ltd.
Rm. 603, Trade Center

159-2 Samsung-Dong, Kangnam-Ku
Seoul 135-731, Korea

Tel: 82.(0).2.551-6070/6079

Fax: 82.(0).2.551.6080

Radlan Computer Communications, Ltd.
Atidim Technological Park, Bldg. #4

Tel Aviv 61131, Israel

Tel: 972.(0).3.645.8555

Fax: 972.(0).3.645.8544

For more information, visit our website at:

www.marvell.com

MOVING FORWARD

Worldwide Sales Offices

Western US

Marvell

700 First Avenue
Sunnyvale, CA 94089, USA
Tel: 1.408.222.2500

Fax: 1.408.752.9028

Sales Fax: 1.408.752.9029

Marvell

5400 Bayfront Plaza

Santa Clara, CA 95054, USA
Tel: 1.408.222.2500

Central US

Marvell

9600 North MoPac Drive, Suite #215
Austin, TX 78759, USA

Tel: 1.512.343.0593

Fax: 1.512.340.9970

Eastern US/Canada

Marvell

Parlee Office Park

1 Meeting House Road, Suite 1
Chelmsford, MA 01824 , USA
Tel: 1.978.250.0588

Fax: 1.978.250.0589

Europe

Marvell

5 Marchmont Gate
Boundary Way

Hemel Hempstead
Hertfordshire, HP2 7BF
United Kingdom

Tel: 44.(0).1442.211668
Fax: 44.(0).1442.211543

FASTER®

Israel

Marvell

6 Hamada Street

Mordot HaCarmel Industrial Park
Yokneam 20692, Israel

Tel: 972.(0).4.909.1500

Fax: 972.(0).4.909.1501

China

Marvell

5J1, 1800 Zhongshan West Road
Shanghai, PRC 200233

Tel: 86.21.6440.1350

Fax: 86.21.6440.0799

Marvell

Rm. 1102/1103, Jintian Fudi Mansion
#9 An Ning Zhuang West Rd.

Qing He, Haidian District

Beijing, PRC 100085

Tel: 86.10.8274.3831

Fax: 86.10.8274.3830

Japan

Marvell

Shinjuku Center Bldg. 44F

1-25-1, Nishi-Shinjuku, Shinjuku-ku
Tokyo 163-0644, Japan

Tel: 81.(0).3.5324.0355

Fax: 81.(0).3.5324.0354

Taiwan

Marvell

2Fl., No.1, Alley 20, Lane 407, Sec. 2
Ti-Ding Blvd., Nei Hu District

Taipei, Taiwan, 114, R.0.C

Tel: 886.(0).2.8177.7071

Fax: 886.(0).2.8752.5707

Korea

Marvell

Rm. 603, Trade Center

159-2 Samsung-Dong, Kangnam-Ku
Seoul 135-731, Korea

Tel: 82.(0).2.551-6070/6079

Fax: 82.(0).2.551.6080

	Cover
	List of Tables
	List of Figures
	Section 1. Architectural Specification
	1.1 Introduction
	1.1.1 Relevant Devices
	1.1.2 Relevant Documents

	1.2 CORE Driver
	1.3 System-Dependent Header File (mvOs.h)
	1.4 SCSI to ATA Translation Layer (SAL)
	1.5 Common Intermediate Application Layer Tasks (Common IAL)
	1.6 Intermediate Application Layer (IAL)
	1.7 Application Layers

	Section 2. System Integration
	2.1 Introduction
	2.2 System Integration Using Only CORE Driver
	2.2.1 System-Dependent Header File (mvOs.h)
	2.2.2 Hardware Detection, Adapter, and CORE Driver Initialization
	2.2.3 Storage Devices Detection and Initialization
	2.2.3.1 Storage Device Discovery Algorithm
	2.2.3.2 Initialization of the Port Multiplier
	2.2.3.3 Initialization of Hard Drive Algorithm
	2.2.3.4 Configuring EDMA Mode

	2.2.4 Command Queuing, Execution and Completion
	2.2.4.1 Command Queuing and Execution
	2.2.4.2 Command Completion
	Interrupt Driven Driver and Command Completion in ISR
	Interrupt Driven Driver and Command Completion Deferred in Task
	Polling Driven Command Completion

	2.2.5 Error Handling
	2.2.5.1 PCI Bus Error
	2.2.5.2 SATA Bus Error
	2.2.5.3 Hard Drive Errors
	2.2.5.4 Command Timeout
	2.2.5.5 Software Errors

	2.3 System Integration Using CORE Driver, SCSI to ATA Translation Layer, and Common IAL Layers
	2.3.1 System-Dependent Header File (mvOs.h)
	2.3.2 Hardware Detection; Initialization of Adapter, CORE, SAL, and Common IAL Drivers
	2.3.3 Command Queuing, Execution, and Completion
	2.3.3.1 Command Queuing and Execution
	2.3.3.2 Command Completion

	2.3.4 Error Handling
	2.3.4.1 PCI Bus Error
	2.3.4.2 SATA Bus Error or Hard Drives Errors
	2.3.4.3 Command Timeout
	2.3.4.4 Software Errors

	2.4 System Integration by Example
	2.4.1 Hardware Detection
	2.4.2 Hardware Initialization
	2.4.3 Storage Devices Initialization
	2.4.4 Command Queuing and Execution
	2.4.5 Interrupt Servicing and Command Completion
	2.4.6 Bus Reset Upon Timeout

	2.5 Miscellaneous Issues
	2.5.1 Hotplug on SATA Channels
	2.5.2 Logger Module for Debug Messages Logging
	2.5.3 Channel-to-Channel Communication (aka Target Mode)
	2.5.3.1 Channel-to-Channel Communication: Initialization
	2.5.3.2 Channel-to-Channel Communication: Sending a Message
	2.5.3.3 Channel-to-Channel Communication: Transferring Blocks
	2.5.3.4 Channel-to-Channel Communication: Error Handling
	Message Error Handling
	Block Transfer Error Handling

	2.5.4 I/O-Granularity
	Interrupt Coalescing in I/O Granularity Design Highlights
	2.5.4.1 Enabling I/O-Granularity CORE Driver Support
	2.5.4.2 I/O-Granularity Command Queuing
	2.5.4.3 I/O-Granularity Command Completion
	2.5.4.4 I/O-Granularity Error Handling

	2.5.5 Restrictions when Using the CORE Driver API

	Section 3. Linux Intermediate Application Layer
	3.1 Introduction
	3.1.1 Linux IAL SCSI Host Template Driver
	3.1.2 Linux IAL Extension Library

	3.2 Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support
	3.3 Building and Running the Project
	3.3.1 Requirements
	3.3.2 Building and Running the Project
	3.3.2.1 Building the Project for Linux RedHat
	3.3.2.2 System Monitoring and Driver/proc Extension
	3.3.2.3 Reading from the /proc Extension files
	3.3.2.4 Writing to the /proc Extension Files

	3.3.3 Hot-Swapping Storage Devices
	3.3.3.1 Adding a Storage Device
	3.3.3.2 Removing a Storage Device

	3.4 Linux IAL SCSI Host Template Driver API
	3.5 Linux IAL Extension Library

	Section 4. Windows Intermediate Application Layer
	4.1 Introduction
	4.1.1 Windows IAL SCSI Miniport Driver Functionality

	4.2 Building and Installation
	4.2.1 Requirements
	4.2.2 Building
	4.2.3 Installation of the Driver into a Running System
	4.2.4 Installing Windows 2000/XP/2003 on a Marvell Serial ATA Host Adapter
	4.2.5 Using Windows 2000/XP/2003 SCSI Parameters
	4.2.6 Hot-Swapping Storage Devices

	Section 5. Bios Extension Driver Intermediate Application Layer
	5.1 Introduction
	5.1.1 BIOS Extension Driver Functionality

	5.2 Building and Installation
	5.2.1 Requirements
	5.2.2 Building
	5.2.3 Installation of the BIOS Extension Driver
	5.2.4 Un-installation of the BIOS Extension Driver

	Section 6. Core Driver
	6.1 Introduction
	6.2 CORE Driver API and Data Structures Summary
	6.2.1 CORE Driver API Summary
	6.2.2 CORE Driver Data Structure Summary

	6.3 Compile-Time CORE Driver Configuration
	6.3.1 CORE Driver Logging Mechanism
	6.3.2 CORE Driver Queue Size
	6.3.3 Single Data Region Support
	6.3.4 Allocating the Command Info Structure on the IAL Stack Support
	6.3.5 Channel-to-Channel Communication Support (aka Target Mode)
	6.3.6 I/O-Granularity Interrupt Acceleration

	6.4 CORE Driver API User Implementation Requirements and Restrictions
	6.4.1 Requirements
	6.4.1.1 Command Completion and Event Notification
	6.4.1.2 System Functions
	6.4.1.3 Data Types

	6.5 Detailed CORE Driver Implemented API and Data Structures
	6.5.1 Enumerators and Defines
	6.5.1.1 Enumerators
	6.5.1.2 Defines
	Logger Defines
	Log Message Type

	6.5.2 Data Structures
	MV_SATA_ADAPTER
	MV_SATA_CHANNEL
	MV_QUEUE_COMMAND_INFO
	MV_UDMA_COMMAND_PARAMS
	MV_NONE_UDMA_COMMAND_PARAMS
	MV_STORAGE_DEVICE_REGISTERS
	MV_SATA_EDMA_PRD_ENTRY

	6.5.3 CORE Driver API
	6.5.3.1 CORE Driver Adapter Management
	6.5.3.2 CORE Driver SATA Channel Management
	6.5.3.3 Execute Synchronous Non-UDMA ATA Commands (Polling Driven)
	6.5.3.4 Port Multiplier Functions (Polling Driven)
	6.5.3.5 Queuing Asynchronous ATA Commands

	6.5.4 Interrupt Service Routine

	6.6 System-Dependent Header File (mvOs.h)
	6.6.1 Types and Defines
	6.6.1.1 Data Types (User-Implemented)
	6.6.1.2 Defines (User-Implemented)

	6.6.2 Data Structures
	6.6.2.1 MV_OS_SEMAPHORE (User-Implemented)
	6.6.2.2 Command Completion and Event Notification (User-Implemented)
	6.6.2.3 System Routines (User-implemented)
	6.6.2.4 Logger API
	6.6.2.5 Interrupt Coalescing in I/O Granularity API
	6.6.2.6 Channel-to-Channel Communication Mode Functions

	Section 7. SCSI to ATA Translation Layer
	7.1 Introduction
	7.2 Architecture
	7.3 SAL API Summary
	7.4 SAL SCSI Characteristics
	7.4.1 Implementation Standards
	7.4.2 Device Addressing
	7.4.3 SCSI Features
	7.4.3.1 Unit Attention Condition Reporting
	7.4.3.2 Auto-Sense
	7.4.3.3 Parameters Mode Pages
	7.4.3.4 Relative Addressing

	7.4.4 Supported SCSI Commands

	7.5 Internal Implementation
	7.5.1 Command Splitting
	7.5.2 Control Synchronization
	7.5.3 Buffer Synchronization

	7.6 SCSI to ATA Commands Translation Table
	7.7 ATA to SCSI Error Translation
	7.8 SAL Integration
	7.9 SAL API
	7.9.1 Enumerators
	7.9.2 Data Structures
	7.9.2.1 MV_SATA_SCSI_CMD_BLOCK
	Description of Fields:

	7.9.2.2 MV_SATA_SCSI_CHANNEL_STATS
	7.9.2.3 MV_SATA_SCSI_DRIVE_DATA
	7.9.2.4 MV_SAL_ADAPTER_EXTENSION

	7.9.3 API Functions

	Section 8. IAL Common Layer
	8.1 Introduction
	8.2 Common IAL Basic Design and Integration Guidelines
	8.2.1 Initialization Latency and State Machines
	8.2.2 System Timer
	8.2.3 Common IAL Software Command Queue

	8.3 Common IAL Function API and Data Structures Summary
	8.3.1 API Summary of Common IAL Functions
	8.3.2 Common IAL Data Structure Summary

	8.4 Common IAL Internal State Diagrams
	State Diagram Conventions
	8.4.1 Common IAL Adapter State Diagram
	8.4.2 Common IAL Channel State Diagram

	8.5 Detailed IAL Function API and Data Structures
	8.5.1 Detailed Common IAL Data Structures
	8.5.1.1 Enumerators and Defines
	8.5.1.2 Data Structures
	MV_IAL_COMMON_CHANNEL_EXTENSION
	MV_IAL_COMMON_ADAPTER_EXTENSION

	8.5.2 Common IAL API
	8.5.2.1 Common IAL Helper Functions
	8.5.2.2 Common IAL API State-Machine-Related Functions

	8.5.3 Common IAL API User-Supplied Routines
	8.5.4 Common IAL TWSI Devices Access

	Section 9. Revision History
	Address Page

