
Serial ATA Software Driver 
User Manual for the 88SX50xx 
and 88SX60x1 Adapters

Software Version 3.2.0

Doc. No. MV-S800188-00, Rev. 0.9
January 29, 2004
Not approved by Document Control.  For review only.

Pre-release Draft
Not Approved by Document Control



Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Disclaimer
This document provides preliminary information about the products described, and such information should not be used for purpose of final design. Visit the Marvell® web 
site at www.marvell.com for the latest information on Marvell products.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, 
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any 
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for 
any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. 
Marvell makes no commitment either to update or to keep current the information contained in this document. Marvell products are not designed for use in life-support 
equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. 
The user should contact Marvell to obtain the latest specifications before finalizing a product design. Marvell assumes no responsibility, either for use of these products or 
for any infringements of patents and trademarks, or other rights of third parties resulting from its use. No license is granted under any patents, patent rights, or trademarks 
of Marvell.These products may include one or more optional functions. The user has the choice of implementing any particular optional function. Should the user choose to 
implement any of these optional functions, it is possible that the use could be subject to third party intellectual property rights. Marvell recommends that the user investigate 
whether third party intellectual property rights are relevant to the intended use of these products and obtain licenses as appropriate under relevant intellectual property 
rights. 
Marvell comprises Marvell Technology Group Ltd. (MTGL) and its subsidiaries, Marvell International Ltd. (MIL), Marvell Semiconductor, Inc. (MSI), Marvell Asia Pte Ltd. 
(MAPL), Marvell Japan K.K. (MJKK), Marvell Semiconductor Israel Ltd. (MSIL), SysKonnect GmbH, and Radlan Computer Communications, Ltd.
Export Controls.  With respect to any of Marvell�s Information, the user or recipient, in the absence of appropriate U.S. government authorization, agrees: 1) not to re-export 
or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), 
to a national of EAR Country Groups D:1 or E:2; 2) not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technol-
ogy or software and direct products thereof are controlled for national security reasons by the EAR; and, 3) in the case of technology controlled for national security reasons 
under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of 
the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List  
("USML").  At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their 
receipt of any such information. 
Copyright © 2004.  Marvell.  All rights reserved.  Marvell, the Marvell logo, Moving Forward Faster, Alaska, Prestera and GalNet are registered trademarks of Marvell.  Dis-
covery, Fastwriter, GalTis, Horizon, Libertas, Link Street, NetGX, PHY Advantage, Raising The Technology Bar, UniMAC, Virtual Cable Tester, and Yukon are trademarks of 
Marvell.  All other trademarks are the property of their respective owners.

 
Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 

Document Status
Advanced            
Information

This document contains design specifications for initial product development. Specifications may 
change without notice. Contact Marvell Field Application Engineers for more information.

Preliminary 
Information

This document contains preliminary data, and a revision of this document will be published at a 
later date.  Specifications may change without notice. Contact Marvell Field Application Engineers 
for more information.

Final                      
Information

This document contains specifications on a product that is in final release.  Specifications may 
change without notice. Contact Marvell Field Application Engineers for more information. 

Revision Code:                                                                                                                                   
Preliminary Technical Publication:  

Document Conventions

Note

Provides related information or information of special importance.

Caution

Indicates potential damage to hardware or software, or loss of data.

Warning

Indicates a risk of personal injury.

Doc. No. MV-S800188-00 Rev. 0.9 CONFIDENTIAL  Copyright © 2004 Marvell

Page 2 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Table of Contents

Section 1. Architectural Specification ................................................................ 5
1.1 Introduction ..................................................................................................................................5

1.2 CORE Driver................................................................................................................................7

1.3 System-Dependent Header File (mvOs.h)...................................................................................7

1.4 SCSI to ATA Translation Layer (SAL) .........................................................................................7

1.5 Common Intermediate Application Layer Tasks (Common IAL)..................................................8

1.6 Intermediate Application Layer (IAL) ...........................................................................................8

1.7 Application Layers .......................................................................................................................9

Section 2. System Integration............................................................................ 10
2.1 Introduction ................................................................................................................................10

2.2 System Integration Using Only CORE Driver ............................................................................10

2.3 System Integration Using CORE Driver, SCSI to ATA Translation Layer, 
and Common IAL Layers ...........................................................................................................18

2.4 System Integration by Example .................................................................................................19

2.5 Miscellaneous Issues.................................................................................................................21

Section 3. Linux Intermediate Application Layer............................................. 27
3.1 Introduction ................................................................................................................................27

3.2 Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support .................28

3.3 Building and Running the Project ..............................................................................................30

3.4 Linux IAL SCSI Host Template Driver API.................................................................................34

3.5  Linux IAL Extension Library ......................................................................................................34

Section 4. Windows Intermediate Application Layer....................................... 35
4.1 Introduction ................................................................................................................................35

4.2 Building and Installation.............................................................................................................36
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 3
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 5. Bios Extension Driver Intermediate Application Layer ................. 39
5.1 Introduction ............................................................................................................................... 39

5.2 Building and Installation ............................................................................................................ 40

Section 6. Core Driver......................................................................................... 42
6.1 Introduction ............................................................................................................................... 42

6.2 CORE Driver API and Data Structures Summary ..................................................................... 43

6.3 Compile-Time CORE Driver Configuration ............................................................................... 47

6.4 CORE Driver API User Implementation Requirements and Restrictions .................................. 48

6.5 Detailed CORE Driver Implemented API and Data Structures ................................................. 49

6.6 System-Dependent Header File (mvOs.h) ................................................................................ 75

Section 7. SCSI to ATA Translation Layer ........................................................ 83
7.1 Introduction ............................................................................................................................... 83

7.2 Architecture ............................................................................................................................... 83

7.3 SAL API Summary .................................................................................................................... 83

7.4 SAL SCSI Characteristics ......................................................................................................... 83

7.5 Internal Implementation............................................................................................................. 85

7.6 SCSI to ATA Commands Translation Table.............................................................................. 86

7.7 ATA to SCSI Error Translation .................................................................................................. 86

7.8 SAL Integration ......................................................................................................................... 88

7.9 SAL API..................................................................................................................................... 89

Section 8. IAL Common Layer ........................................................................... 94
8.1 Introduction ............................................................................................................................... 94

8.2 Common IAL Basic Design and Integration Guidelines ............................................................ 94

8.3 Common IAL Function API and Data Structures Summary ...................................................... 95

8.4 Common IAL Internal State Diagrams ...................................................................................... 98

8.5 Detailed IAL Function API and Data Structures ...................................................................... 101

Section 9. Revision History.............................................................................. 110
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 4 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Architectural Specification
Introduction
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 1.  Architectural Specification

1.1 Introduction
The 88SX50xx /88SX60x1 is a PCI/PCI-X to 4/8 port Serial ATA (SATA) adapter that provide connectivity to SATA 
storage devices. 

This document describes the software driver architecture of the 88SX50xx /88SX60x1. This architecture provides 
the system integrator (referred to in the driver documentation as the "user") to ramp up a system better and faster, 
using the 88SX50xx /88SX60x1, without the need for thorough knowledge of the adapter itself.

The 88SX50xx /88SX60x1 software driver architecture consists of the following components: (from bottom to top): 
� CORE driver
� System dependent header file (mvOs.h)
� SCSI to ATA translation layer (SAL)
� Common Intermediate Application Layer Tasks (Common IAL)
� Intermediate Application Layer (IAL)
� Application Layers

1.1.1 Relevant Devices
This document is relevant for the following devices:

� 88SX5040, 88SX5041, 88SX5080, 88SX5081
� 88SX6081 and 88SX6041

1.1.2 Relevant Documents
For further information regarding the 88SX50xx /88SX60x1, see the following datasheets:

� 88SX5040, 88SX5041, 88SX5080, & 88SX5081 PCI/PCI-X to 8-Port Serial ATA Host Controller (Document 
Control number MV-S101357-00). 

� 88SX6081 and 88SX6041 PCI/PCI-X to 8-Port Serial-ATA STorage Controller (Document Control Number 
MV-S101495-00).
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 5
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 Adapters
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Figure 1: 88SX50xx /88SX60x1 Software Driver Architecture

Intermediate Application Layer

Application Layers

CORE driver (OS-independent)

Delivered by Marvell

Delivered by Customer
Hardware

SCSI to ATA
translation

layer

Common
Intermediate

Application Layer
tasks

System-
dependent
Header File
(mvOs.h)

System-dependent
Header File (mvOs.h)

System-
dependent
Header File
(mvOs.h)

Optional
Layers
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 6 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Architectural Specification
CORE Driver
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

1.2 CORE Driver
The CORE driver is operating-system-independent source code that manages all accesses to the hardware that 
are needed for a system. The structure of the CORE driver and its API make possible easy integration of a single 
or multiple 88SX50xx /88SX60x1s in a system.

When the CORE driver is compiled with the system-dependent header file (mvOs.h) provided by the user, it gen-
erates code to which the IAL and other layers can connect, using the CORE driver API. It also generates code that 
can access the hardware using functions supplied by mvOs.h.

The CORE driver provides the following functionality:
� 88SX50xx /88SX60x1 adapter management, initialization, diagnostics and status reporting.
� Executes UDMA ATA commands.
� Executes non-UDMA ATA commands.
� Manages command completion and events notification, based on call-back functions.
� Interrupt Service.

Note

The 88SX50xx /88SX60x1 CORE driver is completely ANSI-C compliant source code.

1.3 System-Dependent Header File (mvOs.h)
The system-dependent single header file is named "mvOs.h".

The purpose of this header file is to provide extensions to the CORE driver and other layers that enable it to 
access system resources, lock and unlock resources (by using semaphores) and log events.

The purposes of this file are to:
� Provide an extension to the CORE driver and other layers, for accessing system resources such as memory 

and PCI buses.
� Define data types.
� Provide a data structure and function library for the CORE driver, for initializing, locking and unlocking sema-

phores.
� Provide a function that generates a delay in micro-seconds resolution.
� Provide a function for log messages, with a type of log message differentiator.
� Provide a function for printing a formatted string into a buffer.

1.4 SCSI to ATA Translation Layer (SAL)
The SCSI to ATA Translation Layer is an operating-system-independent layer that provides functionality for trans-
lating SCSI commands to ATA commands.

Such a layer is not mandatory layer. Typically it is used in cases where the IAL connects to a SCSI subsystem and 
the requests that are being handled in the IAL scope are SCSI commands. For example, if a SCSI VERIFY com-
mand is forwarded to the IAL, then the command can be forwarded as is to the SAL for translation to an ATA com-
mand, then the SAL forwards this command to the CORE driver for execution using the CORE driver API.

The SCSI to ATA translation layer provides the following functionality:
� Translation of certain SCSI commands with immediate completion (without queuing to CORE driver).
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 7
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 Adapters
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

� Translation of certain SCSI commands to ATA and then further queuing to CORE driver.
� Error reporting of failing SCSI commands through SCSI sense code.

Note

The SCSI to ATA translation layer is tested with external tools that cover all cases and options of the 
supported SCSI commands.

1.5 Common Intermediate Application Layer Tasks 
(Common IAL)

Common IAL Tasks is an operating-system-independent layer. This layer is optional. It provides various function-
ality that are usually required by IALs.

This layer is used with the SCSI to ATA translation layer when the IAL connects to a SCSI subsystem and utilizes 
SCSI to ATA translation layer functionality for translating SCSI commands to ATA commands.

The Common IAL Tasks layer provides the following functionality:
� Discovery of storage devices connected to a serial ATA channel using point-to-point based connectivity and 

port-multiplier-based connectivity.
� Initialization of storage devices connected to serial ATA channels.
� Parsing of IDENTIFY DEVICE ATA command response buffer.
� Access of TWSI interface on some of the 88SX60X1 devices.

Due to the fact that part of the Common IAL uses a SCSI to ATA translation layer API for performing the discovery 
of storage devices, this part can be compiled and linked only when SAL is available.

Note that the SAL does not have this dependency and it can be compiled and linked with the driver with any part 
of Common IAL being available.

1.6 Intermediate Application Layer (IAL)
The IAL is user-specific code that functions as an intermediate layer between the higher application layers and the 
CORE driver.

Marvell provides three different IALs which, when integrated with the CORE Driver, SAL and Common IAL, pro-
vide a Linux SCSI low-level driver, Windows SCSI mini-port, and a BIOS extension driver.

The IAL definition is according to the system requirements, but what the different IAL implementations have in 
common is the way they connect to the CORE driver (and possibly SAL and Common IAL layers), i.e., by using 
the CORE driver API and data structures.

Examples of application layers to which the IAL can connect:
� IAL connects to SCSI subsystem: In this case, the function of the IAL connecting to an application-layer-

specific SCSI interface, receiving SCSI commands and forwarding them to the SAL for SCSI to ATA transla-
tion then for further execution using the CORE driver.

� IAL connects to ATA subsystem: In this case, the IAL functions as glue software for delivering the ATA 
commands received from the ATA subsystem to the CORE driver.

� IAL does not connect to application layers: This case can be used for verification of a single or multiple 
88SX50xx /88SX60x1s in a newly integrated system.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 8 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Architectural Specification
Application Layers
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

The IAL provides the following functionality:

From the Application layer�s point of view:
� Representation of 88SX50xx /88SX60x1 adapters and their channels and storage devices to the Application 

layers.
� Proper command and request reception from the Application layers and proper completion of them.
� Proper error propagation of events to the Application layers

From the CORE driver API�s point of view:
� Trigger 88SX50xx /88SX60x1 initialization sequences through the CORE driver API. 
� Management of 88SX50xx /88SX60x1 SATA channels and the storage devices connected to them, through 

the CORE driver API. 
� Translation/Delivery/Generation of ATA commands and their delivery to hardware, through the CORE driver 

API. 
� Proper scheduling of commands and requests to hardware, through the CORE driver API.
� Error handling and reporting, through the CORE driver API call-back functions. 
� Calls CORE driver ISR function. 

From the SAL API�s point of view:
� Forwarding SCSI commands to SAL for execution by the 88SX50xx /88SX60x1. 

From the Common IAL API�s point of view:
� Trigger of storage device discovery and initialization sequences.
� Parsing of IDENTIFY DEVICE ATA buffer response.

1.7 Application Layers
The Application layers are the core of the system. When the IAL API is used, the Application layers access the 
88SX50xx /88SX60x1 adapter, SATA channels, and storage devices.

Example of Application Layers:
� A specific operating system to whose SCSI sub-system the IAL connects. (IAL is a SCSI low-level driver 

under Linux, a SCSI mini-port under Windows, etc.)
� RAID subsystem to which the IAL connects as a translation and command scheduling layer, to perform tasks 

on the hardware through the CORE driver.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 9
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 2.  System Integration

2.1 Introduction
This section describes methods of integrating the OS-independent components of the Marvell Serial ATA host bus 
adapter software layers into a user-specific software driver. It is divided into two main sections:
� System integration using only CORE driver (described in Section 2.2).
� System integration using CORE driver, SCSI to ATA translation layer, and Common IAL layer (described in 

Section 2.3).

An example of system integration�Marvell Windows SCSI-port (described in Section 2.4)�is provided. This 
example is based on the system integration method described in Section 2.3).

Section 2.5 "Miscellaneous Issues" has miscellaneous issues involving system integration issues.

The OS-independent components discussed in this section are:
� CORE driver: Provides low-level access to hardware with queuing interface and interrupt service routine 

(see Section 6. "Core Driver" on page 42).
� SCSI to ATA translation layer: Provides functionality for translating SCSI commands to ATA commands and 

queuing capability to hardware using the CORE driver (see Section 7. "SCSI to ATA Translation Layer" on 
page 83). This functionality is usually required when IAL connects to SCSI subsystems.

� Common IAL layer: Provides functionality usually required by IALs. The code is written in OS-independent 
coding style (see Section 8. "IAL Common Layer" on page 94).

Note

This document refers to the software layers that control all the OS-independent components as "high" 
layers or "higher" layers. These software layers consist of the IAL and additional higher layers.

2.2 System Integration Using Only CORE Driver
This system integration method is suitable for systems that need to access adapters for executing ATA com-
mands. A good example of this is a RAID stack that requests read/write I/Os. These I/Os can be translated into 
ATA read/write commands (UDMA or PIO commands) and queued using the CORE driver. The CORE driver han-
dles all queuing, command completion, and error handling for the request commands.

In this type of system integration the following components/functionality must exist:
� Coding of system-dependent header file (mvOs.h), which enables CORE driver accessing system resources 

(described in Section 6.6 "System-Dependent Header File (mvOs.h)" on page 75).
� Hardware detection and CORE driver initialization.
� Storage devices detection and initialization.
� Command queuing, execution and completion.
� Error handling.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 10 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
System Integration Using Only CORE Driver
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.2.1 System-Dependent Header File (mvOs.h)
This file includes macros and possibly function calls that provide the CORE driver with the capability to access 
system resources.

This file is user-supplied. For details see Section 6.6 "System-Dependent Header File (mvOs.h)" on page 75. 

2.2.2 Hardware Detection, Adapter, and CORE Driver Initialization
Higher layers scan the PCI bus/buses for detection of 88SX50xx /88SX60x1 adapters. For each adapter found the 
following steps must be performed by higher layers:
1. Initializes the Base Addresses registers (BARs) found in each adapter�s PCI configuration space (BAR).
2. The system integrator must decide if register access to 88SX50xx /88SX60x1 adapter is performed through 

I/O-BAR or Memory-BAR (and accordingly define the register access in the mvOs.h file).
3. Enable memory and I/O accesses to adapter and enable adapter�s master capability (bits 0, 1, and 2 in Com-

mand register in PCI configuration space).
4. Allocate and initialize (assign zero to all fields) the MV_SATA_ADAPTER data structure and 4/8 

MV_SATA_CHANNEL data structures (depending on the amount of serial ATA channels the adapter sup-
ports).

5. Allocate 4/8 request and response queues (1 KByte for each request queue and 256 bytes for each response 
queue). See the 88SX50xx /88SX60x1 datasheets regarding alignment restrictions that each request/
response queue must have.

Note

The request and response queues must be cache-coherent. For systems that have hardware cache 
coherency assist, the allocation for request and response queues is a simple memory allocation that is 
reachable by the adapter from PCI address space. For systems that don�t have cache coherency 
hardware assist, allocate request and response queues that have non-cacheable attributes when being 
accessed.

6. Set the MV_SATA_ADAPTER data structure variables:
a) Set the adapterId field for a value unique to that specific 88SX50xx /88SX60x1. (In debug mode this field 

is used by the CORE driver for log messages.)
b) Set the adapter pciConfigDeviceId to the PCI device ID of the adapter, as reported on the adapter�s 

PCI configuration space.
c) Set the adapter pciConfigRevisionId to the PCI revision ID of the adapter, as reported on the 

adapter�s PCI configuration space.
d) Set the adapterIoBaseAddress field to the CPU address that enables access from the CPU to the spe-

cific 88SX50xx /88SX60x1 adapter being initialized. The address can be mapped into either memory-BAR 
or 
IO-BAR.

e) Set intCoalThre and intTimeThre threshold fields to the required values for using the interrupt coa-
lescing mechanism. Setting them both to zero indicates that interrupt coalescing thresholds are set to min-
imum, which achieves the same results as disabling them.

f) Set the mvSataEvetNotify field to point to the user-implemented function used by the CORE driver as a 
callback function for event notification.

g) Set the sataChannel pointer to zero.
h) Set pciCommand, pciSerrMask and pciInterruptMask to the required values. (See the 88SX50xx /

88SX60x1 datasheet for further information about these fields.)
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 11
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

7. Call the mvSataInitAdapter() function to start initialization of the adapter.
See Section 6.5.3.1 "CORE Driver Adapter Management" on page 55) for an explanation of the functionality 
of mvSataInitAdapter().

8. Set up the adapter�s interrupt line to trigger a higher layers interrupt service routine wrapper upon interrupt 
generation.

9. If the adapter supports staggered spinup, start an OOB sequence by calling either 
mvSataEnableStaggeredSpinUp() per serial ATA channel for performing an OOB sequence on the 
serial ATA channels one by one, or alternatively call the mvSataEnableStaggeredSpinupAll() function 
to perform an OOB sequence of all serial ATA channels in parallel.

10. Call the mvSataUnmaskAdapterInterrupt() function to enable interrupt assertion by the adapter.

2.2.3 Storage Devices Detection and Initialization
After the hardware detection and initialization described above has been completed, there are two possible states 
per SATA channel�connected or disconnected.

If a specific SATA channel is not connected, then there is no need for further initialization of the specific SATA 
channel.

Note

To determine whether the SATA channel is connected to/disconnected from a storage device, use the 
mvSataIsStorageDeviceConnected()CORE driver function.

If a SATA channel is connected, then higher layers must perform the following algorithms to detect and initialize 
the storage device connected to the specific SATA channel: 

1. Storage device discovery algorithm: Checks whether the SATA channel is directly connected to a hard drive 
or to a port multiplier.

2. Initialization of hard drive algorithm: Reads the hard drive�s IDENTIFY DEVICE data, parses the data, and 
accordingly issues SET FEATURES ATA commands.

3. Initialization of port multiplier: This algorithm is a preparation algorithm to perform the "Initialization of hard 
drive algorithm" for each hard drive connected to the device SATA ports of the port multiplier.

4. Configuring EDMA mode.

2.2.3.1 Storage Device Discovery Algorithm
This is the first algorithm to be executed when a Serial ATA channel is connected.

1. From the MV_SATA_CHANNEL data structures allocated in Section 2.2.2 "Hardware Detection, Adapter, and 
CORE Driver Initialization" initialize the MV_SATA_CHANNEL data structure corresponding to the SATA 
channel being initialized as follows:
a) Set corresponding sataChannel pointers in MV_SATA_ADAPTER channel to point to the 

MV_SATA_CHANNEL chosen.
b) Set channelNumber to the index number of the SATA channel.
c) Set the requestQueue, requestQueuePciHiAddress, and requestQueuePciLowAddress fields 

to point to the request queue allocated in Section 2.2.2 "Hardware Detection, Adapter, and CORE Driver 
Initialization" . The requestQueue parameter is the CPU address to the request queue and  
requestQueuePciHiAddress and requestQueuePciLowAddress are the DMA addresses to the 
request queue.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 12 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
System Integration Using Only CORE Driver
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

d) Set responseQueue, responseQueuePciHiAddress, and responseQueuePciLowAddress as per-
formed in the previous step, except for the response queue.

2. Call the mvSataConfigureChannel() CORE driver function.
3. Initiate software reset protocol using the mvStorageDevATAStartSoftResetDevice()CORE driver 

function. If the adapter supports port multiplier, then the destination port multiplier port must be port 15 (0xF), 
otherwise the destination port must be 0 (default). Note that after software reset protocol has been com-
pleted, the ATA status register equals 0x80, which indicates disk busy.

4. Poll and wait for signature FIS (aka register device to host FIS or FIS 34) to be received. The polling can be 
achieved by calling mvStorageIsDeviceBsyBitOff(), which reads the ATA Status register and returns 
MV_TRUE if the BSY bit switched from �1� to �0�.

5. If the signature FIS received is a port multiplier signature, then perform the algorithm described in Section 
2.2.3.2 "Initialization of the Port Multiplier" .

6. If the signature FIS received is a hard drive signature, then perform the algorithm described in Section 2.2.3.3 
"Initialization of Hard Drive Algorithm" .

2.2.3.2 Initialization of the Port Multiplier
The algorithm described in this section is intended for port multiplier initialization.

This is a preparation algorithm, which detects the number of SATA channels the port multiplier has, and for each 
SATA channel, initializes the hard drive connected to it (if any).

The higher layers must perform the following steps:
1. Query the port multiplier regarding its vendor, features and capabilities. As a result of the query the higher lay-

ers know how many device ports are connected to the port multiplier.
See the mvGetPMDeviceInfo() function in the Common IAL layer (Section 8.5.2.1 "Common IAL Helper 
Functions" on page 103) for reference on how to perform the query.

2. For all device ports on the port multiplier, perform the following:
a) Trigger an OOB sequence on the device port of the port multiplier. This can be achieved by calling 

mvPMDevEnableStaggeredSpinUp(), or alternatively calling 
mvPMDevEnableStaggeredSpinUpAll(), which triggers an OOB sequence on all device ports of the 
port multiplier.

b) Read the Status register of the port multiplier�s device port (using the mvPMDevReadReg() CORE driver 
function). If a hard drive is connected to the port multiplier�s device port, perform the following steps. Oth-
erwise skip to the next port multiplier�s device port.

� Clear the SError register of the port multiplier�s device port (using the mvPMDevWriteReg() CORE 
driver function). This enables the hard drive to send FISes to the adapter�s host port.

� Perform the algorithm described in Section 2.2.3.3 "Initialization of Hard Drive Algorithm"  for the specific 
port multiplier�s device port.

� Continue initialization of the next hard drives connected to the other port multiplier�s device ports.

2.2.3.3 Initialization of Hard Drive Algorithm
The algorithm described in this section initializes a hard drive.

The algorithm can be executed when the hard drive is either connected directly to the adapter�s SATA channel or 
through the port multiplier�s device port.

For the first option, when the hard drive is connected directly to the adapter, perform the algorithm described in 
this section, then perform the steps described in Section 2.2.3.4 "Configuring EDMA Mode" .

For the second option, every function call to the CORE driver�s functions must have the port multiplier�s device 
port as an input to the function.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 13
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

The higher layers must perform the following steps:
1. Initiate the software reset protocol using the mvStorageDevATAStartSoftResetDevice() CORE driver 

function. If the adapter supports port multiplier, then the destination port multiplier port must be port 15 (0xF), 
otherwise the destination port must be 0 (default). Note that after software reset protocol has been com-
pleted, the ATA Status register equals 0x80, which indicates disk busy.

2. Poll and wait for signature FIS to arrive (aka register device to host FIS or FIS 34). The polling can be 
achieved by calling mvStorageIsDeviceBsyBitOff(), which reads the ATA Status register and returns 
MV_TRUE if the BSY bit switched from �1� to �0�.

Note

Steps #1 and #2 above can be automated by calling the mvStorageDevATASoftResetDevice() 
CORE driver function, which initiates a software reset protocol and polls until FIS 34 is received. The 
problematic issue is that a hard drive may be in its mechanics initialization state, thus it may take a few 
seconds until it has been completed. Due to this, the higher layer developer is encouraged to have a timer-
based polling mechanism that as its first step initiates a software reset protocol, but the polling for 
reception of FIS 34 can be used with timer based polling methods that releases the CPU for performing 
other tasks.

3. Execute the IDENTIFY DEVICE ATA command (using the mvStorageDevATAIdentifyDevice() CORE 
driver function).

4. Parse the IDENTIFY DEVICE data buffer and accordingly set the hard drive�s parameters such as UDMA 
speed, write cache, read ahead, etc.

2.2.3.4 Configuring EDMA Mode
Configure each SATA channel�s EDMA mode using the information collected from the IDENTIFY DEVICE data 
buffers (see Section 2.2.3.3 "Initialization of Hard Drive Algorithm" ).

This can be achieved by calling the mvSataConfigEdmaMode() CORE driver function.

2.2.4 Command Queuing, Execution and Completion
After adapter detection and initialization, when the storage devices detection and initialization phases have been 
completed, the adapter and hard drives connected to it are ready for command queuing and execution.

2.2.4.1 Command Queuing and Execution
The command queuing is performed using the mvSataQueueCommand() CORE driver function.

If the command is UDMA read/write then the IAL must provide as input to the mvSataQueueCommand() function, 
a PRD table which is a scatter-gather table (see Section 6. "Core Driver" ).

The UDMA commands are executed solely by the adapter�s EDMA engine, from the point of view of queuing to 
hardware, data transfer, and completion. The PIO commands are performed by the CORE driver.

When the outstanding commands issued to the CORE driver have mixed PIO and UDMA commands, the CORE 
driver identifies the command and automatically switches between EDMA enabled mode for UDMA commands 
execution, and EDMA disabled mode for PIO commands execution.

Note

Higher layers can optionally call the mvSataNumOfDmaCommands() CORE driver function, which returns 
the number of outstanding commands on the specific SATA channel. Using the return value, the higher 
layers can be signalled as to whether the SATA channel has empty slots for further command queuing.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 14 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
System Integration Using Only CORE Driver
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.2.4.2 Command Completion
Command completion is done using a callback function called by the CORE driver, which is a higher layers func-
tion, to indicate completion of a specific command. The completion can have different status indication� success-
ful completion and erroneous completion.

Usually the command completion scheme is triggered by the adapter�s interrupt notifying higher layers of a spe-
cific event. The higher layers call the CORE driver mvSataInterruptServiceRoutine() function, which 
interrogates the adapter and response queues, and upon recognition of completion the CORE driver calls a call-
back function with the statuses.

The callback function is per command and it is defined in the command, when issued to the CORE driver using 
the mvSataQueueCommand() function.

The CORE driver supports three types of command completion schemes. At any time a single scheme is valid.

The higher layers are allowed to change the command completion scheme, but when they do scheme switching, 
higher layers must make sure that no outstanding commands are queued to the adapter.

Interrupt Driven Driver and Command Completion in ISR
This is the default CORE driver command completion mechanism.

The following scenario is typical for such a scheme:
1. Adapter issues PCI interrupt.
2. Operating system calls higher layers interrupt service routine (this is the ISR routine described in Section 

2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization" ).
3. The higher layers ISR calls the mvSataInterruptSerivceRoutine() CORE driver function.
4. The mvSataInterruptServiceRoutine() function interrogates the adapter and response queues, and 

accordingly calls a callback function for completion.

Interrupt Driven Driver and Command Completion Deferred in Task
This scheme makes it possible to partition the command completion into two steps.

The first step is masking the adapter�s interrupt and scheduling a task for interrupt servicing. The second step is 
the actual interrupt service routine and command completion.

Note

To enable this scheme, the higher layers must call the mvSataSetInterruptScheme() function after 
mvSataInitAdapter() has been called.

The following scenario is typical for such scheme:
1. Adapter issues PCI interrupt.
2. Operating system calls higher layers interrupt service routine (this is the ISR routine described in Section 

2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization" ).
3. The higher layers ISR calls the mvSataCheckPendingInterrupt() CORE driver function. 

If the function returns MV_FALSE, then the interrupt is not the adapter�s. 
If the return value is MV_TRUE, then higher layers schedules a task in which the actual interrupt handling will 
be done. 
Note that if the return value is MV_TRUE, then the mvSataCheckPendingInterrupt() function has 
already masked the adapter�s interrupts.

4. Higher layers ISR exits.
5. Scheduled task is executed after the higher layers ISR exits.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 15
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6. Task calls the mvSataInterruptServiceRoutine() CORE driver function.
7. The mvSataInterruptServiceRoutine() function interrogates the adapter and response queues and 

accordingly calls the callback function for completion.
8. The  mvSataInterruptServiceRoutine() function unmasks the adapter�s interrupts before exiting.

Polling Driven Command Completion
This scheme makes it possible to poll for command completion without using the PCI interrupts as a trigger for 
command completion.

Notes

� To enable this scheme, the higher layers must call the mvSataSetInterruptScheme() function 
after mvSataInitAdapter() has been called.

� When this scheme is enabled, higher layers must make sure that 
mvSataUnmaskAdapterInterrupts()has not been called, or if it has been called previously, 
then mvSataMaskAdapterInterrupts() is called before enabling this scheme.

The following scenario is typical for such a scheme:
1. Higher layers queue command(s) using the mvSataQueueCommand() CORE driver function.
2. Higher layers call the mvSataInterruptServiceRoutine()CORE driver function.
3. The mvSataInterruptServiceRoutine() function interrogates the adapter and response queues and 

accordingly calls the callback function for completion.

Note

Higher layers must not queue new commands in the context of completion callback functions. Higher 
layers must wait until mvSataInterruptServiceRoutine() exits.Afterwards it is permissible to queue new 
commands.

2.2.5 Error Handling
When using the CORE driver, the following hardware and software errors may occur:

� PCI bus error
� SATA bus errors
� Hard drives errors
� Command timeout
� Software errors

The following section details how the CORE driver handles such errors, using its API.

2.2.5.1 PCI Bus Error
When a PCI bus error occurs and it is detected by the adapter, a PCI interrupt is generated (depending on the 
pciSerrMask and pciInterruptMask settings defined in Section 2.2.2 "Hardware Detection, Adapter, and 
CORE Driver Initialization" ). Higher layers must call the mvSataInterruptServiceRoutine() function as 
part of the interrupt service. Upon PCI bus error the mvSataInterruptServiceRoutine() function calls the 
mvSataEventNotify() callback function with corresponding parameters, indicating that a PCI bus error was 
detected.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 16 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
System Integration Using Only CORE Driver
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

It is recommended that upon detection of a PCI bus error, higher layers abort all outstanding commands, re-initial-
ize the adapter and its storage devices, and then retry the aborted commands.

2.2.5.2 SATA Bus Error
Depending on the adapter, a SATA bus error can be identified using different methods. For example, for a 
88SX50XX device, if an UDMA command was completed with the ERR bit equal to �1� in ATA status, and the ATA 
ERROR register equals 0x0C or 0x14, then this means that a SATA bus error occurred in the middle of execution 
of a command. (The command is completed via the completion callback function of the specific failed command).

The higher layers can also periodically poll the SError registers on all the adapter�s SATA channels, to identify 
serial ATA bus errors.

It is recommended that upon detection of a serial ATA bus error, all outstanding commands be aborted and retried. 

2.2.5.3 Hard Drive Errors
Upon completion of a failed command due to a hard drive error (for example UNC error), the CORE driver calls 
the callback function with error indication.

Depending on the type of failure, higher layers must decide which actions should be done next. 

2.2.5.4 Command Timeout
When higher layers issue a command to the CORE driver, it is recommended to allocate a timeout period for each 
specific command.

When a command�s timer expires, it is recommended that the higher layers perform the following for the specific 
SATA channel on which the command timed out:
1. Call the mvSataDisableChannelDma()function. 

This disables the queuing mechanism.
2. Call mvSataFlushDmaQueue().

This triggers the CORE driver to empty its queue. When each entry is emptied, the CORE driver calls the rel-
evant callback function with abort indication.

3. Call mvSataChannelHardReset().
This resets the adapter�s specific serial ATA bridge and re-issues an OOB sequence.

4. Trigger the Storage Devices Detection and Initialization algorithm for re-initialization of the SATA channel.
(See Section 2.2.3 "Storage Devices Detection and Initialization" .)

5. After re-initialization has been completed, retry the abort commands.

2.2.5.5 Software Errors
The CORE driver has many sanity checks with regards to the parameters that are passed to the CORE driver 
functions. It is recommended that in the initial stages of system integration, all CORE driver logging messages be 
enabled. At more advanced stages the CORE driver provides the ability to filter only the error messages and dis-
able all logging messages in the production driver, since they increase the CORE driver�s footprint and decreases 
its performance.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 17
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.3 System Integration Using CORE Driver, SCSI to ATA 
Translation Layer, and Common IAL Layers

This system integration method is typical for systems that have SCSI subsystems that initiate SCSI commands.

The CORE, SAL, and Common IAL layers can be integrated with the user�s IAL, thus providing an interface for 
executing SCSI commands as if the SATA hard drives were SCSI targets.

This is done by different functionality provided by the different layers:
� SAL provides the functionality of translating SCSI commands into ATA commands and an interface for queu-

ing to the CORE driver.
� CORE driver provides hardware access and ATA command queuing.
� Common IAL provides the functionality for initializing SATA hard drives.

This type of system integration has the following components and tasks that must be fulfilled:-
� Coding of a system-dependent header file (mvOs.h) that enables the CORE driver accessing system 

resources (described in Section 6.6 "System-Dependent Header File (mvOs.h)" on page 75). 
� Hardware detection; initialization of adapter, CORE, SAL, and Common IAL drivers.
� Command queuing, execution, and completion.
� Error handling.

2.3.1 System-Dependent Header File (mvOs.h)
See Section 2.2.1 "System-Dependent Header File (mvOs.h)" 

2.3.2 Hardware Detection; Initialization of Adapter, CORE, SAL, 
and Common IAL Drivers

See Section 2.2.2 "Hardware Detection, Adapter, and CORE Driver Initialization"  up to and including calling the 
mvSataInitAdapter() CORE driver function.

Afterwards, higher layers must perform the following steps:
1. Call the mvSataScsiInitAdapterExt()SAL function to initialize the SAL layer.
2. Set up the adapter�s interrupt line to trigger a higher layers interrupt service routine wrapper upon interrupt 

generation.
3. Call the mvAdapterStartInitialization() Common IAL function, which starts the initialization pro-

cess of storage devices connected to the adapter�s SATA channel.
4. Set up the timer function that is called every 0.5 seconds (or any other configurable variable in Common IAL). 

The timer function must call the mvIALTimerCallback() Common IAL function.

2.3.3 Command Queuing, Execution, and Completion
This section describes how SCSI commands are queued, executed, and completed.

2.3.3.1 Command Queuing and Execution
When the IAL receives a SCSI command, the IAL checks if it is a SCSI read/write command. If this is the case, 
then the IAL must build a PRD table for the SCSI command.

If the SCSI command is read/write or any other SCSI command, the IAL calls the mvExecuteScsiCommand() 
function, which handles all translation from SCSI commands to ATA commands, and queuing to the CORE driver.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 18 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
System Integration by Example
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.3.3.2 Command Completion
When using the SAL, there are several types of command completion:
� Immediate command completion. In the mvExecuteScsiCommand() function, the SAL calls the callback 

function. This is indicated by the return value MV_SCSI_COMMAND_STATUS_COMPLETED from 
mvExecuteScsiCommand().

� Command queued to CORE driver. This is indicated by the return value 
MV_SCSI_COMMAND_STATUS_QUEUED from mvExecuteScsiCommand().

� Failure of command execution. Usually this is because the SAL does not support the command being 
queued. This is indicated by the value MV_SCSI_COMMAND_STATUS_FAILED from 
mvExecuteScsiCommand().

� Queuing in initialization stages. This is usually command queuing due to SATA drives being initialized. When 
SATA drives initialization has been completed for a specific SATA channel, all SCSI commands that were pre-
viously queued with the MV_SCSI_COMMAND_STATUS_QUEUED_BY_IAL return value will be aborted and 
re-queued by the SCSI subsystem.

The command completion status returned by the SAL is a SCSI-like status. Users must map the completion sta-
tuses to their specific SCSI subsystem completion statuses.

2.3.4 Error Handling
When using the CORE driver, SAL, and Common IAL, the following hardware and software errors may occur.
� PCU bus error
� SATA bus error or hard drives errors
� Command timeout
� Software errors

2.3.4.1 PCI Bus Error
See Section 2.2.5.1 "PCI Bus Error" 

2.3.4.2 SATA Bus Error or Hard Drives Errors
These errors are reported to the SAL.

When such errors occur, the SAL translates the error codes to SCSI-like error codes.

Depending on the type of the failure, higher layers must decide on the next actions to be done.

2.3.4.3 Command Timeout
See Section 2.3.4.3 "Command Timeout" . Instead of triggering the Storage Devices Detection and Initialization 
algorithm, (Section 2.2.3) call the mvRestartChannel() Common IAL function, which performs all the storage 
devices re-initialization.

2.3.4.4 Software Errors
See Section 2.2.5.5 "Software Errors" .

2.4 System Integration by Example
This section provides an example of system integration using the methods described in Section 2.3 "System Inte-
gration Using CORE Driver, SCSI to ATA Translation Layer, and Common IAL Layers" .
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 19
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

The example is the Marvell Windows SCSI mini-port driver for the 88SX50xx /88SX60x1 adapters.

2.4.1 Hardware Detection
The Windows kernel performs hardware detection in the following manner:
1. Windows calls DriverEntry() function.
2. DriverEntry enables auto-flush mechanism (see Section 6. "Core Driver"  for further information about auto- 

flush).
3. DriverEntry initializes a template hwInitializationData data structure that contains all function pointers for 

hardware initialization, command execution, and interrupt service routine.
4. DriverEntry calls the ScsiPortInitialize() SCSI Port function, each time defining a new PCI device ID 

from the 88SX50xx /88SX60x1 adapters device list. According to this method, DriverEntry requests that the 
SCSI Port scan the PCI buses for adapters that have the relevant vendor ID and device ID, and accordingly 
calls mvFindAdapter().

2.4.2 Hardware Initialization
For each adapter found by the SCSI port driver (as requested by DriverEntry using the ScsiPortInitialize() 
function), the SCSI port driver calls the mvFindAdapter() function, which performs the following:
1. Initializes the HwDeviceExtension parameters (see Windows DDK).
2. Gets PCI BAR 0 mapping through ScsiPortValidateRange and ScsiPortGetDeviceBase. Note that the Win-

dows kernel has already enabled memory and I/O access to the adapter and has also enabled the adapter�s 
capability to be a PCI master.

3. Reads adapter�s PCI device ID and revision ID.
4. Allocates request and response queues.
5. Initializes the MV_SATA_ADAPTER data structure (which is part of HwDeviceExtension as previously 

requested by DriverEntry).
6. Calls the mvSataInitAdapter() function.
7. Calls the mvSataScsiInitAdapterExt() function with a pointer to MV_SAL_ADAPTER_EXTENSION, 

which is also part of HwDeviceExtension, as previously requested by DriverEntry.

2.4.3 Storage Devices Initialization
The SCSI port calls the mvHwInitialize() function, which triggers storage devices initialization by calling the 
mvAdapterStartInitialization() Common IAL function.

2.4.4 Command Queuing and Execution
The SCSI port calls mvStartIO() for executing SCSI commands (and other tasks).

If the request was I/O-Control, the IAL handles this request.

If the request was executing SCSI command, the IAL checks if the command is a Read or Write SCSI com-
mand, in which case the IAL must build a PRD table.

Afterwards, the IAL issues a command to the SAL via the mvExecuteScsiCommand() SAL function.

The IAL checks the return value of mvExecuteScsiCommand() and accordingly decides wether to call 
ScsiPortNotification() with NextRequest or NextLuRequest.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 20 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
Miscellaneous Issues
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.4.5 Interrupt Servicing and Command Completion
Upon PCI interrupt from the adapter (or from another adapter sharing the same PCI IRQ), the SCSI port calls the 
mvInterrupt() function, and mvInterrupt()calls mvSataInterruptServiceRoutine() for interrupt 
processing.

Within mvSataInterruptServiceRoutine() the command completion callback is called for completing the 
SCSI commands.

After mvSataInterruptServiceRoutine() has been completed and has returned MV_TRUE (indicating that 
the interrupt was generated by the adapter), mvInterrupt() calls the mvSataScsiPostIntService() SAL 
function.

For every SCSI command completed, the IALCompletion() IAL function is called. (This is defined as a callback 
function for every SCSI command issued to the SAL.

The IALCompletion() function maps the corresponding SAL completion status to SCSI port driver-specific sta-
tus codes.

2.4.6 Bus Reset Upon Timeout
Upon timeout caused by a non-completed SCSI command (previously issued by the SCSI port driver) the  
mvResetBus() IAL function is called.

The function performs the following:
1. Calls the mvSataDisableChannelDma() CORE driver function to disable queuing.
2. Calls the mvSataFlushDmaQueue() CORE driver function. As a result, all callback functions for the out-

standing commands are called with abort indication.
3. Calls the mvSataChannelHardReset() CORE driver function, to reset the SATA bridge and restart an 

OOB sequence.
4. Calls the mvRestartChannel() Common IAL function, to restart storage device re-initialization.

2.5 Miscellaneous Issues

2.5.1 Hotplug on SATA Channels
Upon hotplug event on SATA channel (either connected directly to the adapter or indirectly, through the port multi-
plier) the user-implemented mvSataEventNotify() function is called with the corresponding event.

The event indication can be one of the following:
� SATA channel connect event on 88SX50xx /88SX60x1 adapter 

(indicated by MV_SATA_CABLE_EVENT_CONNECT).
� SATA channel disconnect event on 88SX50xx /88SX60x1 adapter 

(indicated by MV_SATA_CABLE_EVENT_DISCONNECT)
� SATA channel connect or disconnect on port multiplier�s device side SATA channels 88SX50xx /88SX60x1 

(indicated by MV_SATA_CABLE_EVENT_PM_HOT_PLUG).

The hotplug event on the SATA channel connected directly to the adapter is easier to handle than the indirectly 
connected channel (through port multiplier) for the following reasons:
� When the port multiplier sends SDB FIS with the �N� bit indicating a hotplug event on the port multiplier, there 

is no indication whether a device SATA channel was connected or disconnected, or on which device side 
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 21
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

SATA channel it occurred. On the other hand, when the hard drive is directly connected to the adapter, the 
previous events are reported by the adapter.

� When the hard drive is disconnected from the port multiplier while it is in the middle of a transaction (either 
due to PIO command or UDMA command), the command will not be completed. If the hard drive is directly 
connected and a disconnect event occurs, then the software driver can simply abort the transactions.

Due to the above reasons, it is recommended that upon receipt of a hotplug event on the port multiplier�s device 
port, the software drive immediately aborts all outstanding commands and starts storage device re-initialization on 
the specific SATA channel.

Thus at the end of the re-initialization process, the software can determine the reason for the hot plug event and 
on which device channel it occurred.

2.5.2 Logger Module for Debug Messages Logging
The Logger module is a generic debug messages logging mechanism. It is used by the CORE driver, SAL, and 
Common IAL independently of one another.

It is recommended that the IAL also register its debug messages in this logging mechanism.

The Logger module produces output messages for debugging, monitoring, and tracking the activity of the SATA 
adapter driver modules. It uses module identifiers with the required logging level to monitor driver activity. The log-
ging level for each module determines the type of messages being printed for the module. Every driver module 
may be registered independently to the logger, with the desired logging level. 

When the logging filter associated with the module matches the level of the current log message, the logger keeps 
the module name and log filter. It only prints the messages from registered modules.

The message output format is "<Module name> (<Debug Level>) <Message body>", i.e. 

"Core Driver (DEBUG) Issue SRST command"

Note

The Logger module is implemented as part of the CORE driver. See Section 6. "Core Driver" on page 42 
for further information on the API of the Logger module.

2.5.3 Channel-to-Channel Communication (aka Target Mode)
The 88SX60x1 adapter supports a channel-to-channel communication feature (aka Target mode).

In this mode, the Serial-ATA II ports are used for communication between two 88SX60x1 adapters. The communi-
cation channels are not symmetric�one side is configured as an initiator while the other side is configured as a 
target. 

The communication is carried out based on sending either a message or a block of data (via DMA). An IAL call-
back function called by the CORE driver as part of the its interrupt service routine indicates that a message was 
received and/or the SATA channel�s DMA has been completed.

sFigure 2 describes the channel-to-channel communication driver support in the CORE driver.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 22 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
Miscellaneous Issues
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Figure 2: Channel-to-Channel Communication Driver Support in the Core Driver

Initiator host target host

2. mvSataC2CSendRegisterDeviceToHostFIS

Send Vendor Unique FIS 34h
(Register Device to Host)

C2Ccallback (IAL)

activateBMDmaMode

activateBMDmaMode

Send Vendor Unique FIS
39h(DMA Activate)

interrupt

interrupt

1. mvSataC2CActivateBmDma 2. mvSataC2CActivateBmDma

Legend:

internal function

API function

1. mvSataC2CSendRegisterDeviceToHostFIS

Send Vendor Unique FIS 34h
(Register Device to Host)

interrupt

C2Ccallback (IAL)

interrupt

interrupt

interrupt

read write
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 23
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.5.3.1 Channel-to-Channel Communication: Initialization
The channel-to-channel feature is initialized by calling the mvSataC2CInit() CORE driver function.

The IAL calls the function with MV_SATA_C2C_MODE_INITIATOR for the adapter with the initiator SATA channel 
and MV_SATA_C2C_MODE_TARGET for the adapter with the target SATA channel.

When calling the mvSataC2CInit() CORE driver function, the call-back function must be valid for both the initi-
ator and the target.

For disabling the channel-to-channel communication feature the IAL can call the mvSataC2CStop() CORE 
driver function.

2.5.3.2 Channel-to-Channel Communication: Sending a Message
Both initiator and target can send a message with a size of 10 bytes.

The hardware sends this messages using FIS 34 SATA FIS.

For sending a message the IAL calls the mvSataC2CSendRegisterDeviceToHostFIS() Core driver function.

The receiving SATA channel issues an interrupt and the CORE driver calls the defined call-back function as part of 
the interrupt handling.

2.5.3.3 Channel-to-Channel Communication: Transferring Blocks
The IAL can initiate a block transfer using DMA transfer SATA protocol between the initiator and target SATA 
channels. The DMA transfer direction can be either from/to the target SATA channel, but the DMA initiation can be 
triggered only by the initiator SATA channel.

The algorithm is as follows:
1. Initiator�s IAL calls themvSataC2CActivateBmDma() CORE driver function for the initiator SATA channel. 

This initializes the initiator�s DMA and waits for DMA Setup FIS from target SATA channel.
2. Initiator�s IAL calls the  mvSataC2CSendRegisterDeviceToHostFIS() Core driver function to send a 

message to the target channel. The content of the message depends on the IAL�s implementation. It is rec-
ommended that message be unique, so that the driver handling the target SATA channel can recognize it and 
accordingly set the target�s DMA.

3. Software driver that handles the target SATA channel (target�s IAL) receives a unique message (triggered by 
the CORE driver calling the defined call-back function as part of the interrupt handling).

4. Target�s IAL calls the mvSataC2CActivateBmDma() CORE driver function for the target SATA channel. 
The CORE driver sets up the target�s SATA channel DMA and sends DMA ACTIVATE FIS to the initiator.

5. Initiator and target SATA channels perform DMA transfer. When the DMA transfer has been completed, both 
the initiator�s and target�s IALs receive a call-back function call from the CORE driver indicating the comple-
tion.

6. Both the initiator�s and target�s IALs call the mvSataC2CResetBmDma() CORE driver after receiving the 
DMA transfer completion indication.

2.5.3.4 Channel-to-Channel Communication: Error Handling

Message Error Handling 
When sending a message via the mvSataC2CSendRegisterDeviceToHostFIS() Core driver function, if any 
error occurs, then the function returns MV_FALSE.

The errors can be either parameter errors, initialization errors, or FIS transmission errors.

In the case of a FIS transmission error, the IAL can retry the FIS transmission by calling the 
mvSataC2CSendRegisterDeviceToHostFIS()CORE driver function.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 24 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



System Integration
Miscellaneous Issues
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Block Transfer Error Handling 
Upon recognition of a block transfer error, an interrupt is issued for either the initiator or the target. As part of the 
CORE driver�s interrupt service routine, the IALs call-back function is called with the proper error indication.

2.5.4 I/O-Granularity
The interrupt coalescing in I/O Granularity enables command completion interrupts to be coupled into a single 
interrupt. This feature can be used in RAID applications. In such applications a single RAID transaction is divided 
into EDMA transactions to multiple drives and the completion interrupt can be generated as a single interrupt for 
the entire RAID transaction.

Interrupt Coalescing in I/O Granularity Design Highlights
� For every I/O transaction, the related I/O transaction counter is updated with the number of SATA commands 

related to this I/O transaction.
� The 88SX60x1 adapter issues a maskable interrupt, when the number of SATA commands executed with a 

specific I/O transaction number equals the number of SATA commands related to that specific I/O transaction 
number.

� The I/O Granularity driver support is capable of switching between two modes of operations�with and with-
out interrupt coalescing in I/O granularity per SATA adapter.

� When interrupt coalescing in I/O granularity is enabled for the controller, all EDMA transactions for this 
adapter are executed with an interrupt coalescing I/O granularity interrupt scheme.

2.5.4.1 Enabling I/O-Granularity CORE Driver Support
To enable I/O-Granularity CORE driver support, the IAL must call the mvSataEnableIoGranularity() CORE 
driver function after mvSataInitAdapter() has been called.

2.5.4.2 I/O-Granularity Command Queuing
The following steps describe the modifications needed to be done for queuing a command when the I/O-Granular-
ity feature is enabled.
1. For the first command in the chain of commands to be queued with I/O-Granularity, the IAL must set the iog-

CommandType to MV_IOG_COMMAND_TYPE_FIRST and then set the total number of commands in the 
transCount field.

2. Call the mvSataQueueCommand()function. Upon exit the CORE driver sets iogCurrentTransId. This is 
a unique code for the chain of command.

3. IAL saves the iogCurrentTransId returned by CORE driver. This field must be used for the next commands in 
the chain.

4. For the other commands in the chain of commands, the IAL must set the iogCommandType to 
MV_IOG_COMMAND_TYPE_NEXT and then set the transId to the saved value that was previously returned 
by CORE driver.

2.5.4.3 I/O-Granularity Command Completion
The command completion is the same as that described in.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 25
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

2.5.4.4 I/O-Granularity Error Handling
When the I/O-Granularity feature is enabled, error handling is the same as that described in Section 2.2.5 "Error 
Handling"  with the following addition:
When any error occurs, the I/O-Granularity feature is automatically disabled by the CORE driver, to enable the IAL 
to perform error handling and recovery.

When the IAL has completed error handling and recovery, it must re-enable I/O-Granularity feature support by 
calling the mvSataEnableIoGranularity() CORE driver function.

Note

See Section 6. "Core Driver"  for further information about the I/O-Granularity functions API.

2.5.5 Restrictions when Using the CORE Driver API
When using the CORE driver API, the following restrictions apply:
� When allocating a request queue, the PCI address should be 1 KByte aligned.
� When allocating a response queue the PCI address should be 256 bytes aligned.
� The request queue and response queue should be cache coherent or in non-cacheable memory regions.
� When the IAL builds a PRD table, each entry must not cross the 4 GByte addressing boundary (for further 

details, see the 88SX50xx /88SX60x1 datasheet).
� When the IAL calls mvSataShutdownAdapter() for deactivating a specific SATA channel, it must make 

sure that no other task is using the CORE driver API. 
� Depending on operating system implementation, the IAL must gracefully remove (or delete) the semaphore 

from the relevant MV_SATA_CHANNEL data structure after calling mvSataRemoveChannel().
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 26 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Linux Intermediate Application Layer
Introduction
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 3.  Linux Intermediate Application Layer

3.1 Introduction
The 88SX50xx /88SX60x1 Linux Intermediate Application Layer (IAL) is a software layer positioned under the 
Linux SCSI subsystem and above the CORE driver, SAL, and Common IAL.

The Linux IAL implements a Linux SCSI host template (Linux SCSI sub-system low level driver interface) that 
receives SCSI-3 commands and forwards them to the SAL for SCSI command translation to ATA, and later for 
queuing to hardware through the CORE driver API.

The Linux IAL consists of the following parts:
� Linux IAL SCSI Host Template Driver
� Linux IAL Extension Library

Figure 3: Linux IAL Driver Architecture 

Linux Intermediate Application Layer

SCSI Subsystem (SCSI mid-layer)

CORE driver (OS-independent)

Hardware

SCSI to ATA
translation

layer

Common
Intermediate

Application Layer
tasks

System-
dependent
Header File

(mvOs.h)

System-dependent
Header File (mvOs.h)

System-
dependent
Header File

(mvOs.h)

mv_sata.o driver
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 27
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

3.1.1 Linux IAL SCSI Host Template Driver
The Linux IAL Host Template driver is the part of the Linux IAL that enables connectivity to the Linux SCSI sub-
system. It presents the 88SX50xx /88SX60x1 as a SCSI host adapter, by implementing a SCSI host template.

The Linux IAL Host Template driver implements the following functionality:
� Registers the SCSI host adapter to the Linux SCSI subsystem using a Linux SCSI host template data 

structure.
� Triggers the 88SX50xx /88SX60x1 adapter initialization sequence.
� Triggers a storage devices initialization process using the Common IAL API. These storage devices are con-

nected to the 88SX50xx /88SX60x1 SATA channels.

3.1.2 Linux IAL Extension Library
The Linux IAL Extension Library provides the Linux IAL SCSI Host Template driver with the ability to perform a set 
of tasks.

The Extension Library is not implemented from within the SCSI Host Template driver. This is because the Exten-
sion Library is more 88SX50xx /88SX60x1-hardware-oriented than the SCSI Host Template Driver, which makes it 
easier for the user to differentiate between Linux-oriented source code and hardware-oriented source code.

The Linux IAL Extension Library implements the following functionality:
� PRD table generation from SCSI scatter-gather buffers list.
� Sanity checking of vital 88SX50xx /88SX60x1 configuration.
� SCSI commands completion notification, based on call-back function from the SCSI subsystem.
� Triggering of Common IAL storage device initialization sequence upon hot-plug event.
� CORE driver Interrupt Service Routine (ISR) Wrapper.

3.2 Linux IAL SMART (Self-Monitoring, Analysis, and 
Reporting Technology) Support

The Linux IAL supports SMART commands. The commands are standard SMART commands, but the interface is 
a Marvell proprietary interface through the SCSI_IOCTL_SEND_COMMAND interface.

The structure of the SCSI command delivered via SCSI_IOCTL_SEND_COMMAND is a 6-byte command that is 
followed by the buffer containing the ATA register values. The driver uses the same buffer for input and output, 
thus the minimum buffer allocated by application must be 520 bytes (8 bytes for ATA registers + 512 bytes for the 
whole sector returned by some of SMART commands). 

For an explanation of ATA register values, see the ATA/ATAPI-6 specification.

Marvell has ported a general Linux utility called SMARTMONTOOLS. This utility generally interfaces to ATA hard 
drives via /dev/hdX block devices.

To communicate with the driver, the ported utility uses the SCSI_IOCTL_SEND_COMMAND IO control function 
with the vendor-specific command code 0xC as a transport for the SMART commands.

For an explanation of the SMARTMONTOOLS package, see the Readme file and the SMARTMONTOOLS user 
manual.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 28 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Linux Intermediate Application Layer
Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

The following commands are supported by the Linux IAL as part of the support for SMART:
� IDENTIFY - ATA IDENTIFY (not a SMART command)
� ENABLE SMART
� DISABLE SMART
� ENABLE DISABLE AUTOSAVE
� EXECUTE OFFLINE DIAGS
� RETURN STATUS
� READ SMART THRESHOLDS
� ENABLE DISABLE AUTO OFFLINE
� READ SMART LOG

Table 1: SMART Command Input Buffer

Buffer 
Offset

Value Description

0x0 0xC Vendor-specific SCSI command 

0x1 0 Reserved

0x2 0 Reserved

0x3 0 Reserved

0x4 6 Command header length

0x5 0 Reserved

0x6 0xEC for the INDENTIFY
0xB0 for the SMART

ATA command register input value

0x7 Depends on the command ATA sector number register input value

0x8 Depends on the command ATA features register input value

0x9 Depends on the command ATA sector count register input value

0xA Depends on the command ATA LBA Mid register input value

0xB Depends on the command ATA LBA High input value

0xC Depends on the command ATA device register input value

0xD Depends on the command ATA error register input value
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 29
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

3.3 Building and Running the Project

3.3.1 Requirements
The requirements are:
� Linux machine with kernel 2.4 series
� 88SX50xx /88SX60x1 software package
� Native GNU toolchain compilers (gcc, ld etc.)
� Kernel header files installed on /usr/src/linux

3.3.2 Building and Running the Project
To build and run the project:
1. Log in as root.
2. Change the current directory to LinuxIAL.
3. Execute a make command on the shell.
4. Add a SCSI subsystem to the running kernel by executing /sbin/modprobe scsi_mod.
5. Run the kernel module by executing /sbin/insmod mv_sata.o.

This detects storage devices connected to the SATA adapter and presents them as SCSI storage devices to 
the Linux kernel.

To build a project with three different levels of log messaging:

1. Log in as root.
2. Change the current directory to LinuxIAL.
3. Execute a sh build.sh command on the shell.
4. The script creates target directory build/Linux in driver root. 

The target directory structure is:
build/Linux/DebugError/mv_sata.o - Module prints log messages on error.

build/Linux/DebugFull/mv_sata.o - Module prints all log messages.

build/Linux/Free/lmv_sata.o - Module prints no messages.

5. Add a SCSI subsystem to the running kernel by executing /sbin/modprobe scsi_mod.
6. Change the current directory to the desired target directory, e.g., cd ./../build/Linux/DebugFull.
7. Run the kernel module by executing /sbin/insmod mv_sata.o.

This detects storage devices connected to the SATA adapter and presents them as SCSI storage devices to 
the Linux kernel.

Notes

� If the kernel header files are not located in the /usr/src/linux directory, edit the Makefile in the LinuxIAL 
directory and change the value of the KERN_HEADERS parameter to the desired directory.

� If you need to cross-compile the project (and not compile it with native tools), edit the Makefile and 
modify the CROSS_COMPILE parameter so it has the prefix of the desired cross compiler toolchain 
(e.g., for PowerPC, CROSS_COMPILE is assigned the value powerpc-linux-). Also, modify the 
CFLAGS parameter to the correct values. (See the example in the Makefile.)

� To stop and remove the kernel module from the Linux kernel, execute rmmod linuxIAL.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 30 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Linux Intermediate Application Layer
Building and Running the Project
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

3.3.2.1 Building the Project for Linux RedHat
This section describes how to build the project that makes it possible to install and boot Linux RedHat on an 
88SX50xx /88SX60x1 adapter.
1. Log in as root.
2. Download the Redhat kernels to a directory, e.g., /usr/src/kernels/. For RedHat 8 you must have a directory 

/usr/src/kernels/2.4.18-14 and for RedHat 9 you must have a directory /usr/src/kernels/2.4.20-8.
3. Change the current directory to RedHat (under LinuxIAL).
4. To make sure the files are in Unix format, run the following command:

> dos2unix gen_module.sh files/*
5. Execute sh gen_module.sh /usr/src/kernels. This generates files in the Files directory.
6. Copy these files to a diskette.
7. Start the RedHat installation on the required computer which has the 88SX50xx /88SX60x1 adapter(s).
8. During installation, select Expert mode and follow the installation instructions.
9. When a driver disk is requested, insert the diskette in Drive A and continue with the installation.

Notes

� The gen_modules.sh script scans all directories under /usr/src/kernels and according to the directory 
names it generates four drivers per directory name. The four drivers are drivers for boot, single CPU, 
SMP, and bigmem.

� Due to the fact that gen_modules.sh scans directories under /usr/src/kernels, it needs the exact ver-
sion of the kernel for which the drivers are being built. For example, for RedHat 9 kernel, the directory 
name must be 2.4.20-8, which is the exact kernel version RedHat 9 installation is shipped with.

3.3.2.2 System Monitoring and Driver/proc Extension
After installing the Linux kernel module mv_sata.o, a new directory called �mvSata� is added to the /proc/scsi/ 
directory.

This directory has one or more files in it. Each file�s name is a number (number of files is equal to number of 
88SX50xx /88SX60x1 adapters installed in the system). Each file indicates a sequence number of a single 
88SX50xx /88SX60x1 adapter.

For example if there is a single 88SX50xx /88SX60x1 adapter and there are no other SCSI adapters in the sys-
tem, a single file named 0 will be found, and its path will be /proc/scsi/mvSata/0.

Two operations can be done on each of the /proc extension files�reading from them and writing to them.

3.3.2.3 Reading from the /proc Extension files
When reading from a /proc extension file (for example by executing cat /proc/scsi/mvSata/0) the output is as fol-
lows:

Version_1_0

TimeStamp:

4069645 512

Number of interrupts generated by the adapter is:

130097
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 31
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

TO           - Total Outstanding commands accumulated

TSA          - Total number of IOs accumulated

TS           - Total number of sectors transferred (both read/write)

QD           - Queued DMA feature set enabled

LBA48        - Large Block Address 48 feature set enabled

Can't Remove - If '1' the drive can't be removed

The meaning of the output is:
� �Version_1_0� is the output version of the /proc extension file.
� TimeStamp is the timestamp of the system. The first number is the tick count of the operating system and the 

second is the number of ticks the operating system counts per second (fixed number).
� Number of interrupts produced by the adapter: Note that even if the same interrupt line on the PCI is shared 

with other adapters, this number will still count the real number of interrupts generated by the adapter.
� Description of the channels attached to the adapter:

3.3.2.4 Writing to the /proc Extension Files
It is possible to do three different things while writing to the /proc extension files:
� Change interrupt coalescing parameters: Executing a write to the /proc extension file (e.g., echo "int_coal 1 

30 10000" > /proc/scsi/mvSata/0) changes the values of the interrupt coalescing parameters of the specific 
SATA unit (each quad SATA unit contains 4 SATA channels). The format is int_coal x y z, where x is the 

Adapter Channel ID LUN TO TSA TS Vendor QD LBA48

0 0 0 0 2185609 96433 9110766 IC35L040AV 0 0

0 1 0 0 988860 37376 3262702 IC35L040AV 1 0

0 2 0 0 4 4 8 IC35L040AV 1 0

0 3 0 0 4 4 8 IC35L040AV 1 0

0 4 0 0 4 4 8 IC35L040AV 1 0

0 5 0 0 4 4 8 IC35L040AV 1 0

0 6 0 0 4 4 8 IC35L040AV 1 0

0 7 0 0 4 4 8 IC35L040AV 1 0

Adapter, Channel, 
ID, LUN

SCSI ID

TO Number of outstanding commands accumulated.

TSA Total number of IO operations.

TS Total number of sectors transferred through the specific SATA channel.

Vendor Model number of the storage device connected to the specific SATA channel.

QD Indication that the storage device has the queued DMA feature set enabled 
(indicated by value 1).

LBA48 Indication that the storage device has the 48-bit LBA addressing feature set enabled 
(indicated by value 1).
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 32 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Linux Intermediate Application Layer
Building and Running the Project
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

SATA unit (0 or 1), y is the number of completed commands needed to generate an interrupt, and z is the tim-
eout in 150 MHz ticks, where the adapter starts counting after the first command is completed.

� Shut down a SATA physical interface: Execute echo "sata_phy_shutdown x" > /proc/scsi/mvSata/0 to 
shut down a SATA PHY x.

� Power up a SATA physical interface: Execute echo "sata_phy_powerup x" > /proc/scsi/mvSata/0 to power 
up a SATA PHY x.

Notes

� All values indicated by x, y, and z above should be in decimal format.

� After power-up, the SATA physical interfaces are all powered up.

3.3.3 Hot-Swapping Storage Devices
When adding or removing a storage device from an operating system, when the 88SX50xx /88SX60x1 adapters 
driver is already up and running, the SCSI subsystem must be informed of the changes made. This is done by 
executing Add or Remove requests to the SCSI subsystem.

3.3.3.1 Adding a Storage Device
To add a storage device to a specific SATA channel on a specific adapter (e.g., channel y on adapter x or device z 
on channel y on adapter x in the case of a port multiplier):
1. Poll on the /proc extension file relevant to adapter x and wait until channel y is valid (and the variable z if the 

hard drive is connected to a port multiplier)
2. Execute �echo "scsi add-single-device x y z 0" > /proc/scsi/scsi�.

Note

If the hard drive is connected directly to the adapter�s SATA channel and not through port multiplier, then 
z parameter equals 0

3.3.3.2 Removing a Storage Device
To remove a storage device that is connected on SATA channel y on adapter x (and z if the hard drive is con-
nected through a port multiplier):
1. Execute �echo "scsi remove-single-device x y z 0" > /proc/scsi/scsi�.
2. Remove the storage device connected to SATA channel x on a adapter y.

Note

If the hard drive is connected directly to the adapter�s SATA channel and not through the port multiplier, 
then z parameter equals 0
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 33
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

3.4 Linux IAL SCSI Host Template Driver API

3.5  Linux IAL Extension Library

 

SCSI Host Template Functions
mv_ial_ht_detect Emulates SCSI host controller to the Linux SCSI mid-level subsystem. 

Detects 88SX50xx /88SX60x1 adapters on PCI buses. For the adapter it 
detects, calls mv_ial_lib_init_adapter.

mv_ial_ht_proc_info Prints into a buffer information with regards to a specific 88SX50xx /
88SX60x1 adapter. This information is intended for the /proc file system.

mv_ial_ht_queuecommand Schedules a translation of SCSI commands to ATA commands and issues 
execution to a specific 88SX50xx /88SX60x1 adapter using the CORE 
driver API.

mv_ial_ht_hl_bus_reset Resets a specific SCSI bus. Eventually it is translated to reset a specific 
serial ATA channel.

mv_ial_ht_release Shuts down and frees all resources for a specific 88SX50xx /88SX60x1 
adapter.

88SX50xx /88SX60x1 Device Initialization
mv_ial_lib_init_channel Initializes a specific 88SX50xx /88SX60x1 SATA channel by setting 

request/response queues, etc.
mv_ial_lib_free_channel Releases a specific 88SX50xx /88SX60x1 SATA channel.

PRD Table Generation
mv_ial_lib_prd_init Initializes a PRD table pool for a specific 88SX50xx /88SX60x1 adapter.
mv_ial_lib_prd_destroy Destroys a PRD table pool for a specific 88SX50xx /88SX60x1 adapter.
mv_ial_lib_prd_free Frees a PRD table.
mv_ial_lib_generate_prd Generates a PRD table from a Linux SCSI command buffer.

Interrupt Service Routine
mv_ial_lib_int_handler CORE driver ISR wrapper.

Event Notif ication
mv_ial_lib_event_notify Event notification upon an event (Interrupt) from the 88SX50xx /

88SX60x1.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 34 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Windows Intermediate Application Layer
Introduction
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 4.  Windows Intermediate Application Layer

4.1 Introduction 
The 88SX50xx /88SX60x1 Windows 2000/XP/2003 Intermediate Application Layer (IAL) is a software layer posi-
tioned under the Windows SCSI port driver and above the CORE driver, SAL, and Common IAL.

The Windows 2000/XP/2003 IAL implements a SCSI Miniport driver that receives SCSI-3 commands and for-
wards them to SCSI to ATA translation layer for further queuing to hardware via CORE driver API.
.

Windows IAL

Windows SCSI Port driver

CORE Driver (OS independent)

Hardware

SCSI to ATA
translation layer

(OS - independent)

Common Intermediate
Application Layer tasks

(OS - indepndent)

System-
dependent
Header File
(mvOs.h)

System-dependent
Header File (mvOs.h)

System-
dependent
Header File
(mvOs.h)

mvSata.sys
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 35
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

4.1.1 Windows IAL SCSI Miniport Driver Functionality
The Windows IAL SCSI miniport driver implements the following functionality:
� Represents the 88SX50xx /88SX60x1 as a SCSI host adapter.
� Triggers 88SX50xx /88SX60x1 initialization sequence.
� Triggers storage devices connected to 88SX50xx /88SX60x1 SATA channels via Common IAL functions.
� CORE driver Interrupt Service Routine (ISR) Wrapper.
� Error Handling: Performs mapping of SAL error status to SCSI port error status. 
� Handles hot-plug events, and notifies the SCSI port layer about these events.
� Windows IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) support

The Windows IAL SCSI miniport driver fully supports the Windows drive failure prediction (SMART) IOCTL inter-
face. 

The application can use the SMART IOCTL commands (all Windows versions, except of Windows.NET) or WMI 
predictive failure capabilities to execute SMART commands via the SATA SCSI miniport driver. 

Notes

� For an explanation of WMI support for SMART drives see http://www.microsoft.com/whdc/hwdev/
driver/WMI/smartdrv.mspx 

� For an explanation of SMART IOCTL interface support in Windows see the SMARTAPP example at 
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q208048.

The following SMART commands are supported by the Windows IAL:
� IDENTIFY - ATA IDENTIFY (not a SMART command, but can be sent using this IOCTL interface)
� ENABLE SMART
� DISABLE SMART
� ENABLE DISABLE AUTOSAVE
� EXECUTE OFFLINE DIAGS
� RETURN STATUS
� READ SMART ATTRIBS
� READ SMART THRESHOLDS
� READ SMART LOG
� WRITE SMART LOG

4.2 Building and Installation

4.2.1 Requirements
The requirements are:
� Computer running Windows 2000/XP/2003.
� 88SX50xx /88SX60x1 software package
� Microsoft Driver Development Kit build environment for Windows 2000/XP/2003. 
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 36 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.

http://www.microsoft.com/whdc/hwdev/driver/WMI/smartdrv.mspx 
http://www.microsoft.com/whdc/hwdev/driver/WMI/smartdrv.mspx 
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q208048 


Windows Intermediate Application Layer
Building and Installation
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Note

If you use Windows 2000 DDK (which doesn�t include built-int toolchains as in Windows 2003 DDK), then 
you may also need Microsoft Visual C++ Enterprise edition.

4.2.2 Building
To build the driver:
1. Invoke the DDK Free Build Environment under the windows DDK program group. 

This starts a command prompt window and sets some environment variables).
2. Change the current directory to Windows IAL.
3. Run the batch file mvsata_build.bat from the current directory. The generated binary file (mvsata.sys) will 

be located under the directory install.

To build a driver with three different levels of log messaging 
1. Go to the command prompt window.
2. Change the current directory to Windows IAL
3. Run the batch build_all.bat with the parameter indicating the DDK directory, for example build_all.bat 

C:\winddk\3790.
4. The batch file creates the build/Windows target directory in driver root. The target directory structure is the 

following:
- build/Windows/<Platform>/DebugError/mvSata.sys - Module prints log messages on error.
- build/Windows/<Platform>/DebugFull/mvSata.sys - Module prints all log messages.
- build/Windows/<Platform>/Free/mvSata.sys - Module prints no messages.

5. Where the <Platform> parameter can be either i386 (used in 32-bit Windows versions) or amd64 (used in 
Windows version for AMD 64-bit processor.)

Note

For building to i386 and amd64 platforms, Windows 2003 DDK must be installed.

4.2.3 Installation of the Driver into a Running System
The installation of the driver can be done by using the Windows Device Manager. Note that the driver .inf and .sys 
files location depends on the build type chosen in Section 4.2.2 "Building" on page 37.

4.2.4 Installing Windows 2000/XP/2003 on a 88SX50XX-60X1 
Adapter

This section describes how to install and boot from a 88SX50xx /88SX60x1.
1. Copy the mvSata.inf, mvSata.sys and txtsetup.oem files to a diskette.
2. Start a Windows installation on a CD-ROM.
3. When prompted, press the F6 key (at the beginning of the installation).
4. When prompted, press the S key, then insert the diskette in Drive A and continue the installation, following the 

installation instructions.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 37
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

4.2.5 Using Windows 2000/XP/2003 SCSI Parameters
View the .reg files under the Install directory and follow the instructions to enter registry values that affect how the 
Windows 2000/XP/2003 SCSI manager interprets the generic configuration information of SCSI device drivers. 
These values can affect all the 88SX50xx /88SX60x1 adapters� installed drivers or a specific driver. They will take 
effect the next time the driver is started. Following are the registry files supplied and a description of the values 
they set:

� mv_256k.reg specifies the maximum I/O length of transactions issued by the Windows SCSI Port.
� mv_maxReqs specifies the number of outstanding SCSI requests per SCSI adapter.

4.2.6 Hot-Swapping Storage Devices
This driver supports hard drive and port multiplier hot-swapping. The storage drive can be connected or discon-
nected on the fly.

On a connect event the system may take a few seconds before it updates the device manager with regards to the 
new device added. This is due to the disk initialization sequence, which may be stalled due to hard drive initializa-
tion (e.g., when initializing the hard drive�s mechanics).
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 38 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Bios Extension Driver Intermediate Application Layer
Introduction
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 5.  Bios Extension Driver Intermediate 
Application Layer

5.1 Introduction 
The main purpose of the 88SX50xx /88SX60x1 BIOS Extension driver is to enable interrupt 13h extensions to 
hard drives connected to 88SX50xx /88SX60x1 SATA channels.

Figure 4 describes the connectivity of the different software layers.

Figure 4: BIOS IAL Driver Architecture 
.

5.1.1 BIOS Extension Driver Functionality
The BIOS extension driver provides the following functionality:
� Support for PnP and non-PnP system BIOSes
� Initialization of 88SX50xx /88SX60x1 adapters
� Initialization of storage devices connected to 88SX50xx /88SX60x1 SATA channels.
� Hooking up to eight hard drives to interrupt 13h interrupt service routine.
� Servicing interrupt 13h calls

BIOS IAL

System BIOS

In
iti

al
iz

at
io

n

CORE Driver (OS
independent)

Hardware

System-dependent
Header File (mvOs.h)

BIOS
Extension

Driver

Applications

In
t 1

3h
in

te
rfa

ce

In
t 1

3h
in

te
rfa

ce
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 39
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Notes

� BIOS extension driver can hook only eight hard drives to the interrupt 13h service routine chain. If there 
are more than eight hard drives connected to a specific 88SX50xx /88SX60x1, then only the first eight 
drives are initialized and hooked to the int13h chain.

� Interrupt 13h servicing is done via source code found in the BIOS IAL. The CORE driver interface for 
queuing and executing commands is not used for int13h servicing, due to the fact that in run-time the 
text and data sections of the driver are read-only, and only the caller�s stack is read-write. This makes 
it impossible to call CORE driver functions, which need to maintain data structures and pointers to the 
status of the queues.

� The BIOS extension driver does not provide hotplug functionality.

5.2 Building and Installation
The build process results in the following files:
� mvFlshUp.com utility - This utility flashes the BIOS extension driver to a specific 88SX50xx /88SX60x1 

adapter.
� 5080.IMG, 5081.IMG .... 6041.IMG - These are different BIOS extension drivers, each for a different 

88SX50xx /88SX60x1 adapter.

5.2.1 Requirements
The requirements are:
� PC running Windows 2000 or above
� Watcom C/C++ compiler.
� 88SX50xx /88SX60x1 software package.
� DOS for flashing the BIOS extension driver into 88SX50xx /88SX60x1 the adapter�s flash.

Notes

� The project build was tested mainly on Watcom C/C++ compiler version 1.0 on a PC running Windows 
2000.

� The compiler is an open-source compiler that can be downloaded and installed from 
http://www.openwatcom.org. The installation should be for DOS 16/32bit and Windows 16/32 bit 
targets.

5.2.2 Building
To build the driver:
1. Open a command line and change the directory to BiosIAL from the software package root tree.
2. Execute makeBiosDriver.bat.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 40 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.

http://www.openwatcom.org 


Bios Extension Driver Intermediate Application Layer
Building and Installation
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

5.2.3 Installation of the BIOS Extension Driver
To install the BIOS extension driver:
1. Boot the system with DOS (MS-DOS, DR-DOS, or any other variant of DOS).
2. Copy mvFlshUp.com and the required BIOS extension driver image to a diskette.
3. Insert the diskette and run mvFlshUp.com <image name> (image name is the required BIOS extension 

driver image).
The utility provides a list of available adapters to choose from.

5.2.4 Un-installation of the BIOS Extension Driver
To un- install the BIOS extension driver:
1. Boot the system with DOS (MS-DOS, DR-DOS or any other variant of DOS).
2. Copy mvFlshUp.com to a diskette.
3. Insert the diskette and run mvFlshUp.com /erase <adapter Device ID> (Adapter Device ID is the device ID 

of the required adapter. This can be 0x5080, 5081 ... 0x6041).
The utility provides a list of available adapters to choose from.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 41
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 6.  Core Driver

6.1 Introduction
The CORE driver is a software package which is operating system and architecture independent.   When a sys-
tem-dependent header file (mvOs.h file) is attached to the CORE driver, it can access and reserve system 
resources that it needs for proper functioning.

The CORE driver API and data structures are divided into two main categories: 
� CORE-driver-implemented API and data structures: Includes most of the functions and data structures 

being used. These functions are already implemented as part of the CORE driver software suite.
� User-implemented API and data structure: Includes several functions and a single data structure which 

must be implemented by the user in the system-dependent header file (mvOs.h). In Section 6.2 and Section 
6.3 the data structure and functions which must be implemented are referred to as "user-implemented". 

Note

In this document, references to the "CORE driver API and data structure" mean the combination of CORE-
driver-implemented API and data structures plus the user-implemented API and data structure.

The CORE driver provides the following functionality:
� 88SX50xx /88SX60x1 adapter management, initialization, diagnostics and status reporting. 
� Execution of UDMA ATA commands.
� Execution Non-UDMA ATA commands.
� Management of software queue of ATA commands per SATA channel. Each queue depth is 31 commands 

(configurable).
� Management of command completion and events notification, based on call-back functions.
� Interrupt Service.
� I/O Granularity extension for generating a single interrupt on multiple I/Os.
� Channel to Channel communication (aka Target mode): API for communication between two 88SX60X1 

adapters.
� Debug messages logging module: Generic debug messages logging module that is used by the CORE driver 

and can be used by any other software layer.

This section is divided into the following sub-sections:
� �CORE Driver API and Data Structures Summary�: A brief summary that categorizes the CORE driver API 

into groups of functions and a brief description of the data structure being used. The purpose of this section is 
to ramp up the user�s knowledge of the CORE driver�s interface.

� �Compile-Time CORE Driver Configuration�: Describes the functions, data types and data structures the 
user must implement for proper integration of the CORE driver in the system. This section also deals with 
restrictions the user must be aware of when integrating the CORE driver in the system.

� �CORE Driver API User Implementation Requirements and Restrictions�: Shows how to use the CORE 
driver from the Intermediate Application Layer (IAL) point of view. It is separated into sub-sections, each 
describing a specific task the IAL must use.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 42 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
CORE Driver API and Data Structures Summary
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

� �Detailed CORE Driver Implemented API and Data Structures�: A complete reference to the CORE- 
driver-implemented API and data structures.

� �System-Dependent Header File (mvOs.h)�: Details the API, data types, and data structures the user must 
implement for proper integration of the CORE driver in the system.

6.2 CORE Driver API and Data Structures Summary
The following two sub-sections summarize the CORE driver API and data structures, which are categorized in 
groups according to their functionality.

Figure 5: CORE Driver API and Data Structures Block Diagrams

Upper Layers

CORE
driverSystem

Dependent
Header file

(mvOs.h)

C
O

R
E 

dr
iv

er
 A

PI

Conventional PCI / PCI-X buses

88SX50XX-60X1

Functions

Data
Types

Data
Structure

Functions

Data
Structures

88SX50XX-60X1
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 43
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.2.1 CORE Driver API Summary
CORE Driver Adapter Management

mvSataInitAdapter Initializes 88SX50xx /88SX60x1 adapter.

mvSataShutdownAdapter Shuts down 88SX50xx /88SX60x1 adapter.

mvSataReadReg Reads from 88SX50xx /88SX60x1 internal register.

mvSataWriteReg Writes to 88SX50xx /88SX60x1 internal register.

mvEnableAutoFlush Enables auto-completion on errors.

mvDisableAutoFlush Disables auto-completion on errors.

CORE Driver SATA Channel Management
mvSataConfigureChannel Configures 88SX50xx /88SX60x1-specific SATA 

channel.

mvSataRemoveChannel Removes 88SX50xx /88SX60x1-specific SATA chan-
nel.

mvSataIsStorageDeviceConnected Checks if storage device is connected to specific 
SATA channel.

mvSataChannelHardReset Causes 88SX50xx /88SX60x1 to reset a specific 
SATA channel.

mvSataConfigEdmaMode Configures specific SATA channel�s EDMA mode.

mvSataEnableChannelDma Enables specific SATA channel�s EDMA mode.
mvSataDisableChannelDma Disables specific SATA channel�s EDMA mode.

mvSataFlushDmaQueue Flushes corresponding SATA channel�s request 
queue.

mvSataNumOfDmaCommands Returns number of posted DMA commands on a spe-
cific SATA channel request queue.

mvSataSetIntCoalParams Sets interrupt coalescing for specific quad SATA 
channels 88SX50xx /88SX60x1 (or octal SATA chan-
nels on 88SX60X1 adapters).

mvSataSetChannelPhyParams Sets the AMP and PRE values of a specific SATA 
channel.

mvSataChannelPhyPowerOn Powers up the physical interface of a specific SATA 
channel.

mvSataChannelPhyShutdown Shuts down the physical interface of a specific SATA 
channel.

mvSataChannelFarLoopbackDiagnostic Performs an external loopback test of specific SATA 
channel.

mvSataEnableStaggeredSpinUp Enables SATA communication on a specific SATA 
channel.

mvSataEnableStaggeredSpinUpAll Enables SATA communication on all SATA channels.

mvSataDisableStaggeredSpinUp Disables SATA communication on a specific SATA 
channel.

mvSataDisableStaggeredSpinUpAll Disables SATA communication on all SATA channels.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 44 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
CORE Driver API and Data Structures Summary
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

mvSataSetInterfaceSpeed Modifies SATA speed (Gen I/II) on a specific SATA 
channel.

mvSataGetInterfaceSpeed Returns SATA speed (Gen I/II) on a specific SATA 
channel.

Non-UDMA ATA Command Execution Task (Poll ing driven)
mvStorageDevATAExecuteNonUDMACommand Issues user-specific non-UDMA ATA command to 

specific storage device.

mvStorageDevATAIdentifyDevice Issues IDENTIFY DEVICE ATA command to specific 
storage device.

mvStorageDevATASetFeatures Issues SET FEATURES ATA command to specific 
storage device.

mvStorageDevATAIdleImmediate Issues IDLE IMMEDIATE ATA command to specific 
storage device

mvStorageDevATASoftResetDevice Issues SRST sequence to specific storage device.

mvStorageDevATAStarSoftResetDevice Issues SRST sequence to specific storage device but 
does not poll for disk ready status.

mvStorageIsDeviceBsyBitOff Returns MV_TRUE if storage device busy bit is off.

mvStorageDevExecutePIO Issues user-specific PIO ATA command to specific 
storage device (using ATA registers data structure as 
input and output for the function).

mvStorageDevSetDeviceType Sets the storage device type connected to a specific 
SATA channel.

mvStorageDevGetDeviceType Retrieves the storage device type connected to a 
specific SATA channel

Port mult iplier  functions (Poll ing driven)
mvPMDevReadReg Reads a port multiplier�s internal register.

mvPMDevWriteReg Writes to a port multiplier�s internal register.

mvPMDevEnableStaggeredSpinUp Enables communication on a specific SATA channel 
on a port multiplier�s device ports.

mvPMDevEnableStaggeredSpinUpAll Enables communication on all SATA channels on a 
port multiplier�s device ports.

Queue Asynchronous ATA Commands (Interrupt driven)

mvSataQueueCommand Adds ATA command to an asynchronous commands 
queue.

Command Completion and Event Notif ication (User-Implemented)
mvSataCommandCompletionCallBack Callback function called upon specific command 

completion.
mvSataEventNotify Event notification, upon event (Interrupt) from 

88SX50xx /88SX60x1.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 45
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Interrupt Service Routine
mvSataInterruptServiceRoutine Interrupt Service Routine

mvSataMaskAdapterInterrupt Masks 88SX50xx /88SX60x1 adapter interrupts.

mvSataUnmaskAdapterInterrupt Unmasks 88SX50xx /88SX60x1 adapter interrupts.

mvSataSetInterruptScheme Modifies CORE driver interrupt scheme.

mvSataCheckPendingInterrupt Used for checking whether an interrupt is pending 
only in the interrupt scheme, where interrupt handling 
is performed in a task and not in the ISR.

System Routines (User Implemented)
mvOsSemInit Initializes semaphore.

mvOsSemTake Takes ownership of a semaphore.

mvOsSemRelease Releases ownership of a semaphore.

mvOsSaveFlagsAndMaskCPUInterrupts Saves CPU flags and masks its interrupts.

mvOsRestoreFlags Restore CPU flags.

mvMicroSecondsDelay Delays function in micro-seconds resolution.

mvLogMsg User implemented function that enables logging of 
CORE driver messages.

Logger functions
mvLogRegisterModule Associate the module with the logger.
mvLogSetModuleFilter Set log filter for the module

mvLogGetModuleFilter Get log filter for the module
mvLogMsg Prints log message

Interrupt coalescing in I /O granularity functions
mvSataEnableIoGranularity Enables support for interrupt coalescing in I/O granu-

larity.

Channel to channel communication (aka Target mode) functions
mvSataC2CInit Initializes channel to channel communication mode 

for a specific SATA channel.
mvSataC2CStop Disables channel to channel communication mode 

for a specific SATA channel.
mvSataC2CSendRegisterDeviceToHostFIS Sends Register Host to Device FIS.
mvSataC2CActivateBmDma Activates Bus Master DMA for the channel.
mvSataC2CResetBmDma Resets Bus Master DMA for the channel.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 46 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Compile-Time CORE Driver Configuration
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.2.2 CORE Driver Data Structure Summary
Data structures modified by IAL and CORE driver.

6.3 Compile-Time CORE Driver Configuration
Several parameters that can be configured in compile time. These are discussed in this section.

6.3.1 CORE Driver Logging Mechanism
For logging CORE driver debug messages, the following must be added to the user-specific mvOs.h file:

#define MV_LOG_DEBUG - For logging all debug messages.

#define MV_LOG_ERROR - For logging only error messages.

It is recommended to disable all logging mechanisms on a released driver, to minimize the driver�s footprint and 
maximize performance.

6.3.2 CORE Driver Queue Size
The default behavior of the CORE driver in compile time is that its queue size is 31 commands.

It is possible to modify this behavior in compile by adding the following lines to the user-specific mvOs.h file:

#define MV_SATA_OVERRIDE_SW_QUEUE_SIZE

#define MV_SATA_REQUESTED_SW_QUEUE_SIZE <queue size> 
 where <queue size> is the requested queue size (between 1 and 31).

MV_SATA_ADAPTER Data structure representing 88SX50xx /88SX60x1 adapter.
MV_SATA_CHANNEL Data structure representing a specific 88SX50xx /88SX60x1 

SATA channel.
MV_STORAGE_DEVICE_REGISTERS Data structure representing a storage device�s registers. Used 

upon completion of both UDMA and non-UDMA ATA com-
mands.

MV_SATA_EDMA_PRD_ENTRY Data structure representing a single entry in the 88SX50xx /
88SX60x1 PRD table.

MV_UDMA_COMMAND_PARAMS Data structure for passing UDMA ATA command parameters 
to the mvSataQueueCommand() function.

MV_NONE_UDMA_COMMAND_PARAMS Data structure for passing non-UDMA ATA command 
parameters to the mvSataQueueCommand() function.

MV_QUEUE_COMMAND_INFO Data structure for queuing ATA commands through the 
mvSataQueueCommand() function.

MV_OS_SEMAPHORE User-implemented data structure, used for locking/unlocking 
MV_SATA_ADAPTER and MV_SATA_CHANNEL.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 47
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.3.3 Channel-to-Channel Communication Support 
(aka Target Mode)

For enabling channel-to-channel communication support, the following line must be added to the user-specific 
mvOs.h file:

#define MV_SATA_C2C_COMM

6.3.4 I/O-Granularity Interrupt Acceleration
To enable I/O-Granularity interrupt acceleration, the following line must be added to the user-specific mvOs.h file:

#define MV_SATA_IO_GRANULARITY

6.4 CORE Driver API User Implementation Requirements 
and Restrictions

This section describes the requirements that must be implemented by the user and the restrictions the user must 
adhere to when using the CORE driver API.

6.4.1 Requirements
For the CORE driver to work properly, user-implemented functions, data types and data structures must be imple-
mented. In this document these requirements are marked as "User-implemented". For clarification purposes they 
are listed again in this section.

Note

These functions, data types and data structures must all be implemented or declared in the system-
dependent header file (mvOs.h).

6.4.1.1 Command Completion and Event Notification
The user must implement the following functions:

mvSataCommandCompletionCallBack 

mvSataEventNotify

6.4.1.2 System Functions
The user must implement the following functions:

mvOsSemInit

mvOsSemTake

mvOsSemRelease

mvMicroSecondsDelay

###### ADD Logging mechanism functions ######
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 48 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Note

If a locking mechanism is performed in higher layers above the CORE driver, then the user may consider 
not using the CORE driver�s locking mechanism, by defining the above functions in the user-specific 
mvOs.h file with a "while (0) {} " statement.

6.4.1.3 Data Types
The user must implement the following data types:

MV_VOID

MV_U32

MV_U16

MV_U8

MV_VOID_PTR

MV_U32_PTR

MV_U16_PTR

MV_U8_PTR

MV_CHAR_PTR

MV_BUS_ADDR_T

MV_CPU_FLAGS

6.5 Detailed CORE Driver Implemented API and Data 
Structures

6.5.1 Enumerators and Defines

6.5.1.1 Enumerators
MV_BOOLEAN - Enumerator for the value MV_TRUE and MV_FALSE

MV_UDMA_TYPE - Enumerator for either MV_UDMA_TYPE_READ or MV_UDMA_TYPE_WRITE

MV_FLUSH_TYPE - Enumerator for either MV_FLUSH_TYPE_CALLBACK or MV_FLUSH_TYPE_NONE

MV_COMPLETION_TYPE - Enumerator for either MV_COMPLETION_TYPE_NORMAL or 
MV_COMPLETION_TYPE_ERROR or MV_COMPLETION_TYPE_ABORT

MV_EVENT_TYPE - Enumerator for either MV_EVENT_TYPE_ADAPTER_ERROR or 
MV_EVENT_TYPE_SATA_CABLE

MV_SATA_CABLE_EVENT - Enumerator for either MV_SATA_CABLE_EVENT_DISCONNECTED, 
MV_SATA_CABLE_EVENT_CONNECTED or MV_SATA_CABLE_EVENT_PM_HOT_PLUG.

MV_EDMA_MODE - Enumerator for either MV_EDMA_MODE_QUEUED or 
MV_EDMA_MODE_NOT_QUEUED
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 49
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_QUEUE_COMMAND_RESULT - Enumerator for either MV_QUEUE_COMMAND_RESULT_OK, 
MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED, 
MV_QUEUE_COMMAND_RESULT_FULL, MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS or 
MV_QUEUE_COMMAND_RESULT_BAD_PARAMS

MV_NON_UDMA_PROTOCOL - Enumerator for either MV_NON_UDMA_PROTOCOL_NON_DATA, 
MV_NON_UDMA_PROTOCOL_PIO_DATA_IN, or MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT.

MV_QUEUED_COMMAND_TYPE - Enumerator for either MV_QUEUED_COMMAND_TYPE_UDMA, or

MV_QUEUED_COMMAND_TYPE_NONE_UDMA.

MV_SATA_C2C_MODE - Enumerator for channel-to-channel feature. It determines the channel�s role in the 
channel-to-channel communication mode of either MV_SATA_C2C_MODE_INITIATOR or 
MV_SATA_C2C_MODE_TARGET

MV_C2C_EVENT_TYPE - Enumerator for channel-to-channel feature. Can be either 
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_DONE, or 
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_ERROR, or MV_C2C_BM_DMA_DONE, or 
MV_C2C_BM_DMA_ERROR.

MV_IOG_COMMAND_TYPE - Enumerator for I/O Granularity feature. Can be either 
MV_IOG_COMMAND_TYPE_FIRST or MV_IOG_COMMMAND_TYPE_NEXT.

MV_SATA_INTERRUPT_SCHEME - Enumerator for either MV_SATA_INTERRUPT_HANDLING_IN_ISR, 
MV_SATA_INTERRUPT_HANDLING_IN_TASK, or MV_SATA_INTERRUPTS_DISABLED.

MV_SATA_IF_SPEED - Enumerator for either MV_SATA_IF_SPEED_1_5_GBPS, 
MV_SATA_IF_SPEED_3_GBPS, MV_SATA_IF_SPEED_NO_LIMIT and MV_SATA_IF_SPEED_INVALID.

MV_SATA_DEVICE_TYPE - Enumerator for either MV_SATA_DEVICE_TYPE_UNKOWN, 
MV_SATA_DEVICE_TYPE_ATA_DISK, MV_SATA_DEVICE_TYPE_ATAPI_DISK, or 
MV_SATA_DEVICE_TYPE_PM.

6.5.1.2 Defines 
MV_SATA_DEVICE_ID_5080,MV_SATA_DEVICE_ID_5081, MV_SATA_DEVICE_ID_5040, 
MV_SATA_DEVICE_ID_5041, MV_SATA_DEVICE_ID_6081, and MV_SATA_DEVICE_ID_6041 - The dif-
ferent device ID per 88SX50xx /88SX60x1 adapter�s PCI configuration space.

MV_SATA_VENDOR_ID - The vendor ID for the 88SX50xx /88SX60x1 adapter PCI configuration space 
(equals 0x11AB).

MV_SATA_CHANNELS_NUM - Number of maximum serial ATA channels in a single 88SX50xx /88SX60x1 
(equals 8).

MV_SATA_UNITS_NUM - Number of maximum serial ATA units in a single 88SX50xx /88SX60x1 (equals 2).

MV_EDMA_QUEUE_LENGTH - Maximum number of outstanding UDMA ATA commands (equals 32).

MV_EDMA_REQUEST_ENTRY_SIZE - Size of a single entry in a request queue (equals 32).

MV_EDMA_RESPONSE_ENTRY_SIZE - Size of a single entry in a response queue (equals 8).

MV_EDMA_REQUEST_QUEUE_SIZE - Size of an entire request queue (equals 32 * 32 = 1024 bytes).

MV_EDMA_RESPONSE_QUEUE_SIZE - Size of an entire response queue (equals 32 * 8 = 256 bytes).

MV_EDMA_PRD_ENTRY_SIZE - Size of a single entry in a PRD table (equals 16).

MV_EDMA_PRD_SNOOP_FLAG - Flag indicating a snoop operation to be performed on the relevant PRD 
entry.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 50 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_EDMA_PRD_EOT_FLAG - Flag indicating the end of a PRD table.

MV_ATA_IDENTIFY_DEV_DATA_LENGTH - Number of fields in the data array returned from a storage 
device as a response for an IDENTIFY DEVICE ATA command (equals 256).

MV_ATA_MODEL_NUMBER_LEN - Length of the model number, as extracted from the IDENTIFY DEVICE 
ATA command (equals 0x40).

MV_C2C_MESSAGE_SIZE - Definition for channel-to-channel communication feature. The maximum size of 
user data transmitted with Register Device to Host FIS - equals to 10

Logger Defines 
MV_LOG_DEBUG - The preprocessor variable. When one is set, all log debug messages are printed.

MV_LOG_ERROR - The preprocessor variable. When one is set, all log error messages are printed.

Log Levels Filter Mask 
MV_DEBUG_MASK - Filter value for general debug messages (0x1).

MV_DEBUG_INIT_MASK - Filter value for debug messages during initialization (0x2).

MV_DEBUG_INTERRUPTS_MASK - Filter value for debug messages from interrupt service routine (0x4).

MV_DEBUG_SATA_LINK_MASK - Filter value for debug messages related to SATA link layer (0x8).

MV_DEBUG_UDMA_COMMAND_MASK - Filter value for general debug messages related to UDMA com-
mands (0x10).

MV_DEBUG_NON_UDMA_COMMAND_MASK - Filter value for debug messages related to non-UDMA 
commands (0x20).

MV_DEBUG_ERROR_MASK - Filter value for error messages (0x40).

MV_DEBUG_PM_MASK - Filter value for debug messages related to port multiplier (0x80).

MV_DEBUG_ALL_MASK - Filter value to print all log messages.

Log Message Type
MV_DEBUG - General debug message (0x0).

MV_DEBUG_INIT - Debug messages during initialization (0x1).

MV_DEBUG_INTERRUPTS - Debug messages from interrupt service routine (0x2).

MV_DEBUG_SATA_LINK - Debug messages related to SATA link layer(0x3).

MV_DEBUG_UDMA_COMMAND - Debug messages related to UDMA commands (0x4).

MV_DEBUG_NON_UDMA_COMMAND - Debug messages related to non-UDMA commands (0x5).

MV_DEBUG_ERROR - Error message (0x6).

MV_DEBUG_PM - Debug messages related to port multiplier (0x7).

MV_RAW_MSG_ID - Specified instead of module ID in mvLogMsg() function call. 
The message is printed without specifying module ID and debug level.
MV_LOG_PRINT - Macro that defines the OS-dependent print function used by the logger. 
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 51
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.5.2 Data Structures

MV_SATA_ADAPTER 
Fields set by the Intermediate Application Layer

MV_U32 adapterId - A unique number for each 88SX50xx /88SX60x1 adapter. This number is only used for 
indexing multiple 88SX50xx /88SX60x1s for the purpose of log messages.

MV_VOID_PTR IALData - is scratchpad data used only by IAL. 
MV_U8             pciConfigRevisionId - Device revision number of the adapter, as reported from the revision 
number in the adapter�s PCI configuration space.

MV_U16            pciConfigDeviceId - Device Id number of the adapter, as reported from the revision number 
in the adapter�s PCI configuration space.

MV_BUS_ADDR_T adapterIoBaseAddress - A CPU address for accessing an 88SX50xx /88SX60x1 
adapter�s function0, BAR0 base address.

MV_U32 intCoalThre[MV_SATA_UNITS_NUM] - Array of two fields indicating the Interrupt Coalescing 
Threshold for each quad SATA channel.

MV_U32 intTimeThre[MV_SATA_UNITS_NUM] - Array of two fields indicating the Interrupt Time Threshold 
in each quad SATA channel.

mvSataEventNotify - Pointer to a call-back function, used by CORE driver to indicate error or status change 
in an 88SX50xx /88SX60x1 adapter.

MV_SATA_CHANNEL *sataChannel [MV_SATA_CHANNEL_NUM] - Array of MV_SATA_CHANNEL_NUM 
count in fields (equals 8). Each is a pointer to MV_SATA_CHANNEL data structures.

MV_U32 pciCommand - A 32-bit field describing the 88SX50xx /88SX60x1 PCI command register.

MV_U32 pciSerrMask - A 32-bit field describing the bit masking register of the SERR# signal in the 
88SX50xx /88SX60x1 adapter.

MV_U32 pciInterruptMask - A 32-bit field describing the bit masking register of the PCI unit Interrupt Cause 
register.

MV_SATA_CHANNEL
Fields set by the Intermediate Application Layer

MV_U8 channelNumber - Logical number from 0.. MV_SATA_CHANNEL_NUM-1 (equals 7).

MV_DMA_REQUEST_QUEUE_ENTRY *requestQueue - CPU address (pointer) to the request queue of the 
channel.

MV_DMA_RESPONSE_QUEUE_ENTRY *responseQueue - CPU address (pointer) to the response queue 
of the channel.

MV_U32 requestQueuePCIHiAddress - High 32-bit PCI address of the SATA channel request queue.

MV_U32 requestQueuePCILowAddress - Low 32-bit PCI address of the SATA channel request queue.

MV_U32 responseQueuePCIHiAddress - High 32-bit PCI address of the SATA channel response queue.

MV_U32 responseQueuePCILowAddress - Low 32-bit PCI address of the SATA channel response queue. 

MV_QUEUE_COMMAND_INFO
MV_QUEUED_COMMAND_TYPE type - Type of ATA command�UDMA or non-UDMA
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 52 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_U8 PMPort - Destination port multiplier�s port number.

union

{
MV_UDMA_COMMAND_PARAMS udmaCommand;

MV_NONE_UDMA_COMMAND_PARAMS NoneUdmaCommand;

} commandParams - parameters of the ATA command.

MV_UDMA_COMMAND_PARAMS 
 MV_UDMA_TYPE readWrite - Whether the command is read or write.

MV_BOOLEAN   isEXT - Indicates if the command is LBA48 or legacy command.

 MV_U32       lowLBAAddress -The LSB 32 bits of the LBA sector address.

MV_U16       highLBAAddress - The MSB 16 bits of the sector LBA address.

MV_U16       numOfSectors - Number of sectors to transfer.

MV_U32       prdLowAddr - A low 32-bit PCI address to the PRD table of the command.

MV_U32       prdHighAddr- A high 32-bit PCI address to the PRD table of the command.

mvSataCommandCompletionCallBack_t callBack A callback function that is called when command 
execution has been completed.

 MV_VOID_PTR commandId - An arbitrary ID that uniquely identifies the command.

If I/O Granularity is enabled, then the following fields are valid:

MV_BOOLEAN   ioGranularityEnabled - MV_TRUE if I/O Granularity feature is enabled.

MV_IOG_COMMAND_TYPE   iogCommandType - Equals MV_IOG_COMMAND_TYPE_FIRST if this is 
the first command in the I/O granularity command chain. Otherwise equals 
MV_IOG_COMMAND_TYPE_NEXT.

union {MV_U8 transId; MV_U8 transCount} iogGranularityCommandParam - If iogCommandType indi-
cates first command, then union refers to transCount, which indicates the number of I/Os the chain holds. 
Otherwise the union refers to transId, which refers to the transaction chain ID of which this command is part.

MV_U8 iogCurrentTransId - If iogCommandType indicates first command, then iogCurrentTransId is output 
from the CORE driver and it indicates the transaction ID allocated to the chain of commands. Otherwise, 
iogCurrentTransId holds the transaction ID to which this command refers.

Notes

� Only in the case of a 48-bit LBA-feature-set-compliant storage device, numOfSectors can be more 
than 256 sectors and LBA address is 48-bit. Otherwise, numOfSectors can be a maximum of 256 
sectors and LBA address consists of a 28-bit address.

� If numOfSectors is zero and the isEXT field is MV_FALSE (48-bit address feature set is not in use), 
then the UDMA command transfer size is 256 sectors.

� If numOfSectors is zero and the isEXT field is MV_TRUE (48-bit address feature set is in use), then 
the UDMA command transfer size is 65,536 sectors.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 53
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_NONE_UDMA_COMMAND_PARAMS
MV_NON_UDMA_PROTOCOL protocolType - Protocol of the requested ATA command to perform.

MV_BOOLEAN isEXT- Equals MV_TRUE if the command is an LBA 48-bit extended command.

MV_U16_PTR bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be 
word (16-bit) byte aligned).

MV_U32 count - Number of words to transfer from/to buffer.

MV_U16 features- The value to be written to the FEATURES register.

MV_U16 sectorCount - The value to be written to the SECTOR COUNT register.

MV_U16 lbaLow - The value to be written to the LBA LOW register.

MV_U16 lbaMid - The value to be written to the LBA MID register

MV_U16 lbaHigh - The value to be written to the LBA HIGH register.

MV_U8 device - The value to be written to the DEVICE register.

MV_U8 command - The value to be written to the COMMAND register.

mvSataCommandCompletionCallBack_t callBack - A callback function that is called when command 
execution has been completed

MV_VOID_PTR commandId -An arbitrary ID that uniquely identifies the command.

MV_STORAGE_DEVICE_REGISTERS
Fields set either by the IAL or CORE driver (depending on the function used with this data structure).

MV_U8 errorRegister - Storage device�s error register

MV_U16 sectorCountRegister - Storage device�s sector count register.

MV_U16 lbaLowRegister - Storage device�s low LBA register

MV_U16 lbaMidRegister - Storage device�s mid LBA register

MV_U16 lbaHighRegister - Storage device�s high LBA register

MV_U8 deviceRegister - Storage device�s device register

MV_U8 statusRegister - Storage device�s status register

Note

The 16-bit fields in the MV_STORAGE_DEVICE_REGISTERS data structure are all used only in 48-bit 
LBA storage devices. When using legacy 28-bit LBA addressing, only the 8-bit LSB of these fields are 
used.

MV_SATA_EDMA_PRD_ENTRY
Fields set by the Intermediate Application Layer:

MV_U32 lowBaseAddr - Low 32-bit address of the buffer the IAL needs to read/write.

MV_U16 byteCount - Length of the buffer (maximum 64 KByte).

MV_U16 flags - Flags indicating how the 88SX50xx /88SX60x1 adapter must handle this buffer.

MV_U32 highBaseAddr - High 32-bit address of the buffer the IAL needs to read/write.

MV_U32 reserved - Reserved field that IAL must not use.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 54 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Note

See the 88SX50xx /88SX60x1 adapter datasheet for further information about the fields described above.

6.5.3 CORE Driver API

6.5.3.1 CORE Driver Adapter Management
The following CORE driver adapter management functions initialize and configure the 88SX50xx /88SX60x1 
adapter and its SATA channels.

MV_BOOLEAN mvSataInitAdapter (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Initializes 88SX50xx /88SX60x1 adapter by writing the values passed in the MV_SATA_ADAPTER to the 
88SX50xx /88SX60x1 hardware.

IAL allocates an MV_SATA_ADAPTER in the system memory then updates fields that are marked as "Fields 
set by IAL" in the MV_SATA_ADAPTER documentation above. The IAL then calls mvSataInitAdapter, 
passing to it a pointer to the allocated MV_SATA_ADAPTER data structure.

The mvSataInitAdapter performs the following:

1. Masks the adapter�s interrupts
2. Using the pciConfigDeviceId and pciConfigRevisionId, identifies the adapter and accordingly sets 

the internal workarounds needed for the adapter. If the revision ID is greater than the latest sup-
ported, the workarounds of the latest revision ID are implemented.

3. Reads the pre-emphasis and amplitude parameters of all SATA channels from the adapter and 
saves them in the adapter data structure. This is done to preserve user-specific pre-emphasis and 
amplitude that were previously configured (for example the configuration can be either by POST or 
via an on-board TWSI EEPROM). Note that at every reset performed by software to the SATA chan-
nel, the saved pre-emphasis and amplitude values are written to the SATA channel.

4. Performs internal software reset of the adapter. If the adapter is an 88SX50XX, then the function 
writes its default values to the 88SX50XX internal registers. If the adapter is an 88SX60X1, then the 
function uses the global soft reset feature, which reverts all 88SX60X1 internal registers to their 
default value (except PCI configuration space). See the 88SX60X1 datasheet for further information 
about global soft reset.

5. Enables adapter�s LEDs.
6. Configures PCI registers with the user�s required parameters.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure that holds all information to access the corre-
sponding 88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

The mvSataInitAdapter function does not initialize the SATA channels in the 88SX50xx /88SX60x1 
adapter.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 55
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataShutdownAdapter (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Shuts down a specific 88SX50xx /88SX60x1 adapter.

IAL uses this function either before booting the system, or for shutting down a non-usable 88SX50xx /
88SX60x1 adapter.

INPUT
pAdapter - A pointer to the MV_SATA_ADAPTER data structure that holds all information to access the corre-
sponding 88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_U32 mvSataReadReg (MV_SATA_ADAPTER *pAdapter, MV_U32 regOffset)

DESCRIPTION
Returns the value of the register that has the offset regOffset, in an 88SX50xx /88SX60x1 adapter pointed to 
by pAdapter.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

regOffset - An offset to the register to read.

RETURN 
32 bits that hold the value of the register.

Note

Several 88SX50xx /88SX60x1 internal registers are implemented as 8-bit or 16-bit registers. The above 
function can still be used for reading these registers. The read operation result in an 8-bit register will be 
in the first 8 least significant bits of the return value. The reading operating in a 16-bit register will be in the 
first 16 least significant bits of the return value.

Note

Accessing a drive's registers when EDMA is enabled is an unpredictable action.

MV_VOID mvSataWriteReg (MV_SATA_ADAPTER *pAdapter, MV_U32 regOffset, MV_U32 
regValue)

DESCRIPTION
Writes a value regValue to a register with offset regOffset in an 88SX50xx /88SX60x1 adapter pointed to by 
pAdapter.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 56 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

regOffset - An offset to the register to write.

regValue - The value to write to the register.

RETURN 
N/A

Note

Several 88SX50xx /88SX60x1 internal registers are implemented as 8-bit or 16-bit registers. The above 
function can still be used for writing to these registers. The write operation uses the 8 least significant bits 
in the regValue parameter for the 8-bit registers, and uses the 16 least significant bits in the regValue 
parameter for 16-bit registers.

MV_VOID mvEnableAutoFlush(MV_VOID)
DESCRIPTION
If an error occurs on a specific SATA channel, the first command is completed with the error, and the following 
commands are completed with software abort. This function enables this auto-completion on error feature.

INPUT
N/A

RETURN
N/A

MV_VOID mvDisableAutoFlush(MV_VOID)
DESCRIPTION
If an error occurs on a specific SATA channel, the first command is completed with the error, and the following 
commands are completed with software abort. This function disables this auto-completion on error feature.

INPUT
N/A

RETURN
N/A
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 57
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.5.3.2 CORE Driver SATA Channel Management

MV_BOOLEAN mvSataConfigureChannel (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Configures SATA channel whose data structure is pointed to by pAdapter and channelIndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds information to access the 
88SX50xx /88SX60x1 device.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

Refer to the MV_SATA_CHANNEL data structure regarding parameters that must be filled in by the IAL 
before calling the mvSataConfigureChannel() function.

MV_BOOLEAN mvSataRemoveChannel (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Removes data structures and other parameters used for the specific SATA channel that is indicated by 
pAdapter and channelIndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds information to access the 
88SX50xx /88SX60x1 device.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataIsStorageDeviceConnected (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex)

DESCRIPTION
Checks the 88SX50xx /88SX60x1 adapter to determine if a storage device is connected to a specific SATA 
channel, indexed by channelIndex.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 58 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

INPUT
pAdapter - A pointer to a MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE if a SATA storage device is connected

MV_FALSE if a SATA storage device is not connected

Note

This function is used to check if a storage device is connected directly to a 88SX50xx /88SX60x1 adapter.
It can�t be used for checking if a storage device is connected to a port multiplier�s device port.

MV_BOOLEAN mvSataChannelHardReset (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Hardware resets a specific SATA channel.

If the adapter doesn�t support staggered spinup, as in the case of 88SX50XX, then an OOB sequence is 
automatically triggered when the SATA channel reset sequence finished.

If the adapter does support staggered spinup, and it was previously enabled by the 
mvSataEnableStaggeredSpinUp() function, then an OOB sequence is triggered by software after the 
SATA channel reset sequence has been completed. Otherwise an OOB sequence is not triggered.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

This function does not poll for disk ready status (ATA status BSY bit transits to �0�) as in Release 3.1.2 and 
older releases. To do this, the IAL must use the mvSataChannelHardReset() function to perform the 
reset and OOB sequence, and afterwards use the mvStorageIsDeviceBsyBitOff() function for 
polling on disk ready status.

MV_BOOLEAN mvSataConfigEdmaMode (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_EDMA_MODE dmaMode, MV_U8 queueDepth)

DESCRIPTION
Configures a specific SATA channel EDMA mode (queued commands features set or non-queued commands 
feature set).
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 59
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

If the queued commands features set is selected, it configures the queue depth the SATA channel may use.

This function also sets EDMA burst sizes to maximum supported by the adapter.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

dmaMode - Can be either MV_EDMA_MODE_QUEUED, indicating queued commands feature set, or 
MV_EDMA_MODE_NOT_QUEUED, indicating non-queued feature set.

queueDepth - Valid only if queued commands feature set is selected. This parameter indicates the queue 
depth the SATA channel may use.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataEnableChannelDma (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Enables the software ATA commands queuing engine in a specific SATA channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataDisableChannelDma (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Disables the software ATA commands queuing engine in a specific SATA channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 60 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataFlushDmaQueue (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_FLUSH_TYPE flushType)

DESCRIPTION
Flush posted ATA commands on a specific 88SX50xx /88SX60x1 SATA channel software commands queue. 
If the flushType parameter is MV_FLUSH_TYPE_CALLBACK, then all callback functions of the posted and 
still not completed commands are called with a flush indication.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

execCallBack - If this parameter equals MV_FLUSH_TYPE_CALLBACK, then all callback functions for all 
posted and not completed ATA commands are called. If it equals MV_FLUSH_TYPE_NONE then the queue 
is flushed without calling the callback functions.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_U8 mvSataNumOfDmaCommands (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIndex)

DESCRIPTION
Returns the number of posted ATA commands on the software ATA commands queue in a specific SATA 
channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
In the case of success, the return value is number between 0.. MV_MAX_CMD - Number of UDMA ATA com-
mands posted.

In the case of failure, the return value is 0xFF.

MV_BOOLEAN mvSataSetIntCoalParams (MV_SATA_ADAPTER *pAdapter, MV_U8 sataUnit, 
MV_U32 intCoalThre, MV_U32 intTimeThre)

DESCRIPTION
Sets the interrupt coalescing for a specific SATA unit (each SATA unit contains quad SATA channels).

If the adapter supports all units interrupt coalescing (as in the case of the 88SX60X1 adapter) then sataUnit 
equals 0xFF, which signals the CORE driver to enable this feature.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

sataUnit - An index to a specific 88SX50xx /88SX60x1 SATA unit. When sataUnit equals 0xFF, this is an indi-
cation for the CORE to enable the all units interrupt coalescing feature.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 61
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

intCoalThre - Parameter indicating the Interrupt Coalescing Threshold to be set.

intTimeThre - Parameter indicating the Interrupt Time Threshold to be set.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Notes

� For further information about the Interrupt Time Threshold and Interrupt Coalescing Threshold 
registers, see the 88SX50xx /88SX60x1 datasheet.

� This function can be called in runtime without deactivating any SATA channel.

� When this function is called, intCoalThre and intTimeThre in the MV_SATA_ADAPTER data structure 
are automatically updated.

MV_BOOLEAN mvSataSetChannelPhyParams(MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 signalAmps,M_U8 pre)

DESCRIPTION
Modifies the AMP and PRE of a specific SATA channel.

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

signalAmps - New value of the AMP (values can be from 0�7).

pre - New value of the PRE (values can be from 0�3).

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

CORE driver modifies the pre-emphasis and amplitude that were saved previously in the 
MV_SATA_ADAPTER data structure by mvSataInitAdapter(). This is done to preserve the new pre-
emphasis and amplitude values after each SATA channel reset.

MV_BOOLEAN mvSataChannelPhyPowerOn(MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Powers up the physical interface of a specific SATA channel.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 62 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Notes

� The physical interfaces of all SATA channels are powered on by default after reset.

MV_BOOLEAN mvSataChannelPhyShutdown(MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Shuts down the physical interface of a specific SATA channel.

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

No disconnect interrupt will be asserted by the 88SX50xx /88SX60x1 after the physical interface is shut 
down.

MV_BOOLEAN mvSataChannelFarLoopbackDiagnostic (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex)

DESCRIPTION
Performs a an external loopback (far end loopback) diagnostic of a specific SATA channel. The diagnostic 
test can be only performed when a storage device is connected to the SATA channel.

The diagnostic test runs on the specific SATA channel PHY and the SATA PHY in the storage device con-
nected through the SATA cable.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 63
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

RETURN 
MV_TRUE on success of diagnostic

MV_FALSE on failure of diagnostic

Note

See the 88SX50xx /88SX60x1 datasheet for an explanation of the external loopback diagnostics.

MV_BOOLEAN mvSataEnableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on the specific SATA channel.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataEnableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on all SATA channels for the specific 
adapter.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

The IAL can have a function loop calling mvSataEnableStaggeredSpinUp() for all SATA channels on 
the adapter; but the mvSataEnableStaggeredSpinUpAll() function will be faster, since it does the 
OOB sequence negotiation in parallel for all SATA channels.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 64 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataDisableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
Disables SATA channel communication on a specific SATA channel.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataDisableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Disables SATA channel communication on all SATA channels.

This function is relevant for adapters that support staggered spinup (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataSetInterfaceSpeed (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_SATA_IF_SPEED ifSpeed)

DESCRIPTION
This function sets (and can limit) interface speed negotiation for Gen I (1.5 Gbps) or Gen II (3 Gbps).

This function is relevant for adapters that support Gen I and Gen II (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

ifSpeed - The required setting (or limitation) for the specific SATA channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 65
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_SATA_IF_SPEED mvSataGetInterfaceSpeed (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex)

DESCRIPTION
This function returns the currently negotiated interface speed.

This function is relevant for adapters that support Gen I and Gen II (for example the 88SX60X1 adapters).

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_SATA_IF_SPEED_INVALID - If SATA channel staggered spinup is disabled or if an error occurred on the 
function parameters.

MV_SATA_IF_SPEED_1_5_GBPS - If currently negotiated interface speed is Gen I.

MV_SATA_IF_SPEED_3_GBPS - If currently negotiated interface speed is Gen II

6.5.3.3 Execute Synchronous Non-UDMA ATA Commands (Polling Driven)
MV_BOOLEAN mvStorageDevATAExecuteNonUDMACommand (MV_SATA_ADAPTER 
*pAdapter, MV_U8 channelIndex, MV_U8 PMPort, MV_NON_UDMA_PROTOCOL protocolType, 
MV_BOOLEAN isEXT, MV_U16_PTR bufPtr, MV_U32 count, MV_U16 features, MV_U16 sector-
Count, MV_U16 lbaLow, MV_U16 lbaMid, MV_U16 lbaHigh, MV_U8 device, MV_U8 command);

DESCRIPTION
Performs a user-defined non-UDMA command.

Possible commands must belong to a protocol of either non-data, PIO data-in or PIO data-out ATA command.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

PMPort - An index to the port multiplier�s destination port (equals 0 if no port multiplier available).

protocolType - Protocol of the requested ATA command to perform.

isEXT - MV_TRUE if the command is an LBA 48-bit extended command.

bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be word (16-bit) 
byte aligned).

count - Number of words to transfer from/to buffer.

features - The value to be written to the FEATURES register.

sectorCount - The value to be written to the SECTOR COUNT register.

lbaLow - The value to be written to the LBA LOW register.

lbaMid - The value to be written to the LBA MID register.

lbaHigh - The value to be written to the LBA HIGH register.

device - The value to be written to the DEVICE register.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 66 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

command - The value to be written to the COMMAND register.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

When isEXT is MV_TRUE (extended command) All the 16-bit fields of the MV_U16 parameters to the 
function are used. Otherwise only the 8 LSBs are used.

MV_BOOLEAN mvStorageDevATAIdentifyDevice (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 PMPort, MV_U16_PTR identifyDeviceResult)

DESCRIPTION
Performs an IDENTIFY DEVICE ATA command to the storage device connected to the SATA channel 
indexed by channelIndex. The resulting command�s data is stored in identifyDeviceResult.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

PMPort - An index to the port multiplier�s destination port (equals 0 if no port multiplier available).

identifyDeviceResult - Holds a pointer to a 512 bytes data buffer that holds the IDENTIFY DEVICE ATA 
command result.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATASetFeatures (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 PMPort, MV_U8 subCommand, MV_U8 subCommandSpecific1, MV_U8 
subCommandSpecific2, MV_U8 subCommandSpecific3, MV_U8 subCommandSpecific4)

DESCRIPTION
Performs a SET FEATURES ATA command to the storage device connected to the SATA channel indexed by 
channelIndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

PMPort - An index to port multiplier�s destination port (equals 0 if no port multiplier available).

subCommand - Sub-command for the SET FEATURES ATA command.

subCommandSpecific1 - First parameter to the sub-command.

subCommandSpecific2 - Second parameter to the sub-command.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 67
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

subCommandSpecific3 - Third parameter to the sub-command.

subCommandSpecific4 - Fourth parameter to the sub-command.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATAIdleImmediate(MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nelIndex)

DESCRIPTION
Performs the IDLE IMMEDIATE ATA command to the storage device connected to the SATA channel indexed 
by channelIndex.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageDevATASoftResetDevice (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 PMPort, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Performs a software reset sequence on the storage device connected to the SATA channel indexed by chan-
nelIndex.

The software reset sequence is performed according the software reset sequence defined in the ATA/ATAPI-
6 specification

This function waits for the BSY bit to be �0�, which occurs when FIS 34 is sent from the device to the host 
upon software reset completion status.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

PMPort - An index to the port multiplier�s destination port (equals 0 if no port multiplier available).

registerStruct - Holds a pointer to the ATA register data structure, which contains a dump of ATA registers 
upon completion of software reset protocol. If this parameter equals �0�, ATA registers are not dumped.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 68 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvStorageDevATAStartSoftResetDevice (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex, MV_U8 PMPort)

DESCRIPTION
Performs a software reset sequence on the storage device connected to the SATA channel indexed by chan-
nelIndex.

The software reset sequence is performed according the software reset sequence defined in the 
ATA/ATAPI-6 specification

This function does not poll for software reset completion status. To perform the polling, use the 
mvStorageIsDeviceBsyBitOff() function.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

PMPort - An index to the port multiplier�s destination port (equals 0 if no port multiplier available).

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvStorageIsDeviceBsyBitOff (MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nelIndex, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Checks if the BSY bit in ATA status is on/off.

If registerStruct is non-zero, then the ATA registers are dumped into the data structure that is pointed to by 
registerStruct.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

registerStruct - A pointer to the ATA registers data structure. If non-zero, then upon exit the function dumps 
the ATA registers to it.

RETURN 
MV_TRUE when BSY bit is off

MV_FALSE when BSY bit is on (or on failure)

MV_BOOLEAN mvStorageDevExecutePIO (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIn-
dex, MV_U8 PMPort, MV_NON_UDMA_PROTOCOL protocolType, MV_BOOLEAN isEXT, 
MV_U16_PTR bufPtr, MV_U32 count, MV_STORAGE_DEVICE_REGISTERS *pInATARegs,  
MV_STORAGE_DEVICE_REGISTERS *pOutATARegs)

DESCRIPTION
Performs a user-defined non-UDMA command.

Possible commands must belong to a protocol of either non-data, PIO data-in or PIO data-out ATA command.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 69
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

PMPort - An index to the port multiplier�s destination port (equals 0 if no port multiplier available).

protocolType - Protocol of the requested ATA command to perform.

isEXT - MV_TRUE if the command is an LBA 48-bit extended command.

bufPtr - Pointer to a buffer that the PIO data-out/in ATA command transfers from/to (must be word (16-bit) 
byte aligned).

count - Number of words to transfer from/to buffer.

pInATARegs - ATA registers to be written (includes the command).

pOutATARegs - Holds the result of the PIO command.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

When isEXT is MV_TRUE (extended command), then all the 16-bit fields of the ATA registers data 
structure are used. Otherwise only the 8 LSB bits are used.

MV_BOOLEAN mvStorageDevSetDeviceType (MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nelIndex, MV_SATA_DEVICE_TYPE deviceType)

DESCRIPTION
Sets the device type of the storage device connected directly to the adapter�s SATA channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

deviceType - The deviceType connected.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

This function doesn�t query the hardware for the type of storage device, but sets the deviceType field for 
the appropriate channel�s data structure.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 70 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_SATA_DEVICE_TYPE mvStorageDevGetDeviceType (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex)

DESCRIPTION
Gets the device type of the storage device connected directly to the adapter�s SATA channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

RETURN 
MV_SATA_DEVICE_TYPE_UNKOWN if no storage device connected (or upon failure).

MV_SATA_DEVICE_TYPE_ATA_DISK if a hard drive is connected.

MV_SATA_DEVICE_TYPE_ATAPI_DISK if an ATAPI device connected.

MV_SATA_DEVICE_TYPE_PM if a port multiplier is connected.

Note

This function doesn�t query the hardware for the type of storage device connected, but returns the value 
previously set by the mvStorageDevSetDeviceType() function.

6.5.3.4 Port Multiplier Functions (Polling Driven)

MV_BOOLEAN mvPMDevReadReg (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIndex, 
MV_U8 PMPort, MV_U32_PTR pValue, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Reads from a port multiplier�s internal register using PIO non-data protocol.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

PMPort - Must be 0xF (indicated port multiplier�s control port).

pValue - Holds the result of the read (32 bit).

registerStruct - Holds a pointer to the ATA register data structure that contains a dump of ATA registers upon 
completion of register read. If this parameter equals �0�, then ATA registers are not dumped.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 71
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvPMDevWriteReg (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIndex, 
MV_U8 PMPort, MV_U32 value, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
Writes a value to the port multiplier�s internal register using PIO non-data protocol.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

PMPort - Must be 0xF (indicated port multiplier�s control port).

value - Holds the value to be written to the register (32 bit).

registerStruct - Holds a pointer to the ATA register data structure that contains a dump of ATA registers upon 
completion of register write. If this parameter equals �0�, then ATA registers are not dumped.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvPMDevEnableStaggeredSpinUp (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 PMPort)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on a port multiplier�s specific SATA 
channel.

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.

PMPort - Holds the required port multiplier�s SATA channel number.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvPMDevEnableStaggeredSpinUpAll (MV_SATA_ADAPTER *pAdapter, MV_U8 
channelIndex, MV_U8 PMNumOfPorts, MV_U16_PTR bitmask)

DESCRIPTION
Enables SATA channel communication and triggers an OOB sequence on all port multiplier�s SATA channels.

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - Index to a specific 88SX50xx /88SX60x1 channel.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 72 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
Detailed CORE Driver Implemented API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

PMNumOfPorts - Holds the number of device side SATA channels that the port multiplier supports.

bitmask - Pointer to 16-bit data container that holds a bitmask of �1� when the relevant port multiplier�s device 
port staggered spinup operation was successful.

RETURN 
MV_TRUE on success

MV_FALSE on failure

6.5.3.5 Queuing Asynchronous ATA Commands

MV_QUEUE_COMMAND_RESULT mvSataQueueCommand(MV_SATA_ADAPTER *pAdapter,   
MV_U8 channelIndex, MV_QUEUE_COMMAND_INFO *pCommandInfo)

DESCRIPTION
Queue UDMA and non-UDMA commands to Core Driver commands queue for a given channel.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

channelIndex - An index to a specific 88SX50xx /88SX60x1 SATA channel.

pCommandInfo - A pointer to an MV_QUEUE_COMMAND_INFO data structure that holds the parameters of 
the ATA command to add to the commands queue.

RETURN 
MV_QUEUE_COMMAND_RESULT_OK - ATA command is queued successfully.

MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED - ATA command queueing failed 
because queuing mode was not enabled. (the API function mvSataEnableChannelDma was not called suc-
cessfully) or this mode was disabled due to an error.)

MV_QUEUE_COMMAND_RESULT_FULL - Command queueing failed because the commands queue is full.

MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS - Command queueing failed because it tried to 
queue a 48-bit LBA-feature-set-compliant ATA command on a 28-bit LBA-feature-set-compliant storage 
device.

MV_QUEUE_COMMAND_RESULT_BAD_PARAMS - UDMA command queueing failed due to bad parame-
ters passed to function.

Note

It is recommended that the IAL assign the value �0� on the MV_QUEUE_COMMAND_INFO data structure 
(memset operation) before filling in the required parameters.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 73
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.5.4 Interrupt Service Routine

MV_BOOLEAN mvSataInterruptServiceRoutine (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
This function is an interrupt service routine that is called upon receipt of an interrupt from a 88SX50xx /
88SX60x1 adapter.

This routine reads Status registers from the 88SX50xx /88SX60x1 adapter and performs the appropriate 
interrupt service routine function by calling the mvSataCommandCompletionCallBack and 
mvSataEventNotify functions.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE - If there was a real interrupt for the adapter.

MV_FALSE - If there was no real interrupt for the adapter.

MV_BOOLEAN mvSataMaskAdapterInterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Masks all interrupts generated from an 88SX50xx /88SX60x1 adapter.

Before masking the interrupts, this functions stores the value of the interrupt mask register in the 
interruptMaskReg field in the pAdapter data structure.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataUnmaskAdapterInterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Unmasks all interrupts generated from an 88SX50xx /88SX60x1 adapter.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 74 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
System-Dependent Header File (mvOs.h)
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataSetInterruptScheme (MV_SATA_ADAPTER *pAdapter, 
MV_SATA_INTERRUPT_SCHEME interruptScheme)

DESCRIPTION
Modifies interrupt scheme.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

interruptScheme - A parameter containing the required interrupt scheme.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataCheckPendingInterrupt (MV_SATA_ADAPTER *pAdapter)

DESCRIPTION
Checks if an interrupt is pending. If there is a pending interrupt, then this function masks adapter interrupts 
and returns MV_TRUE.

This function must be used only when the interrupt scheme is set to MV_SATA_INTERRUPT_IN_TASK.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

RETURN 
MV_TRUE if there a pending interrupt

MV_FALSE if there is no pending interrupt

6.6 System-Dependent Header File (mvOs.h)

6.6.1 Types and Defines

6.6.1.1 Data Types (User-Implemented)
MV_VOID - Void

MV_U32 - Unsigned 32-bit

MV_U16 - Unsigned 16-bit

MV_U8 - Unsigned 8-bit

MV_VOID_PTR - Pointer to void

MV_U32_PTR - Pointer to unsigned 32-bit

MV_U16_PTR - Pointer to unsigned 16-bit

MV_U8_PTR - Pointer to unsigned 8-bit
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 75
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_CHAR_PTR - Pointer to string

MV_BUS_ADDR_T - Type that makes it possible for CPU to access PCI addresses

MV_CPU_FLAGS - Type that makes it possible for CORE driver to save and restore CPU flags

6.6.1.2 Defines (User-Implemented)
MV_CPU_WRITE_BUFFER_FLUSH() - Macro for flushing CPU write buffer.

MV_CPU_TO_LE16 (x) - Macro for converting 16-bit from CPU endianess to Little Endian.

MV_CPU_TO_LE32 (x) - Macro for converting 32-bit from CPU endianess to Little Endian.

MV_LE16_TO_CPU (x) - Macro for converting 16-bit from Little Endian to CPU endianess.

MV_LE32_TO_CPU (x) - Macro for converting 32-bit from Little Endian to CPU endianess.

MV_REG_WRITE_BYTE (base, offset, value) - Macro for writing byte to 88SX50xx /88SX60x1 internal reg-
ister.

MV_REG_WRITE_WORD (base, offset, value) - Macro for writing word (16-bit) to 88SX50xx /88SX60x1 
internal 
register.

MV_REG_WRITE_DWORD (base, offset, value) - Macro for writing dword (32-bit) to 88SX50xx /88SX60x1 
internal 
register.

MV_REG_READ_BYTE (base, offset) - Macro for reading a byte from 88SX50xx /88SX60x1 internal regis-
ter.

MV_REG_READ_WORD (base, offset) - Macro for reading a word (16-bit) from 88SX50xx /88SX60x1 inter-
nal register.

MV_REG_READ_DWORD (base, offset) - Macro for reading a dword (32-bit) from 88SX50xx /88SX60x1 
internal 
register.

6.6.2 Data Structures

6.6.2.1 MV_OS_SEMAPHORE (User-Implemented)
System-dependent implementation defined in the system-dependent header file (mvOs.h).

6.6.2.2 Command Completion and Event Notification 
(User-Implemented)

MV_BOOLEAN mvSataCommandCompletionCallBack (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex, MV_COMPLETION_TYPE completionType, MV_VOID_PTR *commandID, 
MV_U16 errorCause, MV_U32 timeStamp, MV_STORAGE_DEVICE_REGISTERS *registerStruct)

DESCRIPTION
This callback function is used by the CORE driver to indicate a command completion event.

INPUT
pAdapter - Pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 76 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
System-Dependent Header File (mvOs.h)
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

channelIndex - An index to a specific 88SX50xx /88SX60x1 channel.

completionType - Equals MV_COMPLETION_TYPE_NORMAL if completion is normal with no errors, 
MV_COMPLETION_TYPE_ERROR if completion is erroneous, or MV_COMPLETION_TYPE_ABORT if 
completion is due to an abort request (due to previously called mvSataFlushDmaQueue function with flush-
Type equals FLUSH_TYPE_CALLBACK as a parameter to it).

commandID - The command identifier as it is passed to the functions mvSataQueueUdmaCommand/
mvSataQueueCommand when the command has been issued.

errorCause - Value indicating the Error Cause register in the relevant SATA channel (relevant only for UDMA 
commands).

timeStamp - The elapsed time it took the hardware to execute the command. (Field is taken from the 
response queue entry, relevant only for UDMA commands).

registerStruct - If the completion equals MV_COMPLETION_TYPE_ERROR (command completed with 
errors), this structure holds the register values from the storage device�s command block registers.

RETURN 
MV_TRUE on success

MV_FALSE on failure

Note

See the 88SX50xx /88SX60x1 datasheet for further information on a specific SATA channel Error Cause 
register.

MV_BOOLEAN mvSataEventNotify (MV_SATA_ADAPTER *pAdapter, MV_EVENT_TYPE 
eventType, MV_U32 param1, MV_U32 param2)

DESCRIPTION
This callback function is called when the CORE driver needs to notify the IAL of a specific event.

INPUT
pAdapter - A pointer to an MV_SATA_ADAPTER data structure that holds all information to access the 
88SX50xx /88SX60x1 adapter.

eventType - Equals MV_EVENT_TYPE_ADPT_ERR in the case of an error in the 88SX50xx /88SX60x1 
adapter or equals MV_EVENT_TYPE_SATA_CABLE in the case of a disconnect/connect of a storage device 
to a SATA channel.

param1 - If eventType is MV_EVENT_TYPE_ADPT_ERR, this parameter holds the PCI Cause register read 
from the 88SX50xx /88SX60x1 adapter. If eventType is MV_EVENT_TYPE_SATA_CABLE, this parameter 
equals �0� in the case of a disconnect event notification, or equals �1� in the case of a connect event notifica-
tion.

param2 - If eventType is MV_EVENT_TYPE_ADPT_ERR, this parameter has no use. In the case of event-
Type equals MV_EVENT_TYPE_SATA_CABLE, this parameter holds the index of the SATA channel on 
which the connect/disconnect event.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 77
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

6.6.2.3 System Routines (User-implemented)

MV_BOOLEAN mvOsSemInit (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Initializes a semaphore.

INPUT
semaphore - A pointer to an MV_OS_SEMAPHORE data structure that holds semaphore information to be 
initialized.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvOsSemTake (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Locks a semaphore.

INPUT
semaphore - A pointer to an MV_OS_SEMAPHORE data structure.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvOsSemRelease (MV_OS_SEMAPHORE *semaphore)

DESCRIPTION
Unlocks a semaphore.

INPUT
semaphore - A pointer to an MV_OS_SEMAPHORE data structure.

RETURN 
MV_TRUE on success

MV_FALSE on failure

void mvMicroSecondsDelay (MV_SATA_ADAPTER *pAdapter, MV_U32 delay)

DESCRIPTION
Delay function in micro-seconds resolution.

INPUT
pAdapter - A pointer to the adapter�s data structure.

delay - Number of micro-seconds to delay.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 78 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
System-Dependent Header File (mvOs.h)
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

RETURN 
N/A

6.6.2.4 Logger API

MV_BOOLEAN mvLogRegisterModule(MV_U8 moduleId, MV_U8 filterMask, char* name);

DESCRIPTION
This functions registers the module with the logger. Each module in the driver must provide a unique module 
identifier for the registration. It is recommended to call the function prior to module initialization, otherwise the 
log messages issued prior to calling this function won�t be seen.

INPUT
moduleId - The module identifier.

filterMask - The filter mask for logging. See �Log Levels Filter Mask� on page 51

name- Pointer to the module name. The module name string is not copied by the logger so the caller must 
not free the memory containing the string.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvLogSetModuleFilter(MV_U8 moduleId, MV_U8 filterMask)

DESCRIPTION
This function defines the new log filter for the registered module.

INPUT
moduleId - The module identifier. See �Log Levels Filter Mask� on page 51.

filterMask - The new filter mask for logging. 

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_U8 mvLogGetModuleFilter(MV_U8 moduleId)

DESCRIPTION
This function returns log filter settings for the registered module.

INPUT
moduleId - The module identifier.

RETURN 
Module logging filter value. For unregistered module, this function returns 0.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 79
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

void mvLogMsg(MV_U8 moduleId, MV_U8 type, char* format,...)

DESCRIPTION
This function prints the log message of a specified type and format. The message is printed only if the module 
is registered in the logger and the message type matches the log filter settings for the current module.

INPUT
moduleId - The module identifier.

type - Log message type (see �Log Message Type� on page 51)

format - Formatted string

RETURN 
None

6.6.2.5 Interrupt Coalescing in I/O Granularity API

MV_BOOLEAN mvSataEnableIoGranularity (MV_SATA_ADAPTER* pAdapter, MV_BOOLEAN 
enable)

DESCRIPTION
Enables and disables interrupt coalescing in I/O granularity for the specific SATA adapter. If it is enabled, the 
function masks all channel interrupts and enables I/O granularity coalescing interrupts.

INPUT
pAdapter    - Pointer to the adapter data structure.

enable    - MV_TRUE to enable interrupt coalescing in I/O granularity, MV_FALSE to disable interrupt coa-
lescing in I/O granularity 

RETURN 
MV_TRUE on success

MV_FALSE on failure

6.6.2.6 Channel-to-Channel Communication Mode Functions

MV_BOOLEAN mvSataC2CInit(MV_SATA_ADAPTER *pAdapter, MV_U8 channelIndex,             
MV_SATA_C2C_MODE mvSataC2CMode, MV_VOID_PTR mvSataC2CCallBack)

DESCRIPTION
Initializes SATA channel for Target Mode communication.

INPUT
pAdapter    - pointer to the adapter data structure.

channelIndex    - index of the specific SATA channel.

mvSataC2CMode   - the channel role in Target Mode communication: target or initiator.

mvSataC2CCallBack - callback function to call on target mode communication event.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 80 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



Core Driver
System-Dependent Header File (mvOs.h)
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataC2CStop (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIndex)

DESCRIPTION
Disables target mode for SATA channel.

INPUT
pAdapter    - pointer to the adapter data structure.

channelIndex    - the index of the specific SATA channel

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataC2CSendRegisterDeviceToHostFIS (MV_SATA_ADAPTER *pAdapter, 
MV_U8 channelIndex, MV_U8 pmPort, MV_BOOLEAN bInterrupt, MV_U8 
msg[MV_C2C_MESSAGE_SIZE])

DESCRIPTION
Sends Register Device to Host FIS on specific SATA channel.

INPUT
pAdapter    - pointer to the adapter data structure.

channelIndex - the index of the specific SATA channel.

pmPort - Port multiplier port number.

bInterrupt - determines whether to generate the interrupt on the receiver side.

msg - message containing 10 bytes of user data, which is reflected in ATA register on the receiver channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataC2CActivateBmDma (MV_SATA_ADAPTER *pAdapter, MV_U8 chan-
nelIndex, MV_U8 pmPort, MV_U32 prdTableHigh, MV_U32 prdTableLow, MV_UDMA_TYPE 
dmaType)

DESCRIPTION
Activates Bus Master DMA for the specific SATA channel.

INPUT
pAdapter    - pointer to the adapter data structure.

channelIndex    - the index of the specific SATA channel.

pmPort - Port Multiplier port number.

prdTableHigh - the upper 32-bit of PRD table address.

prdTableLow - the lower 32-bit of PRD table address.

dmaType - DMA operation type (read or write).

RETURN 
MV_TRUE on success

MV_FALSE on failure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 81
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataC2CResetBmDma (MV_SATA_ADAPTER *pAdapter, MV_U8 channelIn-
dex)

DESCRIPTION
Resets Bus-Master DMA for the specific SATA channel.

INPUT
pAdapter    - pointer to the adapter data structure.

channelIndex    - the index of the specific SATA channel.

RETURN 
MV_TRUE on success

MV_FALSE on failure

typedef MV_BOOLEAN (*C2CCallBack_t)(struct mvSataAdapter * pAdapter, struct 
mvSataChannel * pChannel, MV_C2C_EVENT_TYPE event, MV_U32 msgSize, MV_U8* msg);     

DESCRIPTION
This is a user-implemented callback function, which is executed upon target mode Register device to host 
FIS reception, Bus Master DMA transfer completion, or communication error.

 INPUT
 pAdapter    - pointer to the adapter data structure.

 pChannel   - pointer to the SATA channel data structure.

 event - target mode communication event which could be one of the following: 

- MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_DONE: Register device to host FIS has been 
successfully received.

- MV_C2C_REGISTER_DEVICE_TO_HOST_FIS_ERROR: Register device to host FIS transfer error.
- MV_C2C_BM_DMA_DONE: Bus Master DMA transaction succeeded.
- MV_C2C_BM_DMA_ERROR: Bus Master DMA data transfer error succeeded.

msgSize - message buffer size. If message buffer is unavailable, equals � 0�.

msg        - message buffer which contains either 10 bytes user data in the case of 
MV_C2C_REGISTER_DEVICE_TO_HOST_FIS, otherwise equal to NULL.

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 82 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
Introduction
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 7.  SCSI to ATA Translation Layer

7.1 Introduction
The SCSI to ATA Translation Layer (SAL) driver is a software layer that is operating system and architecture inde-
pendent. The functionality of this layer is to translate SCSI commands into ATA commands and vice versa. It can 
be used as a sub-component of an OS-specific driver that is layered under the OS SCSI sub-system.

7.2 Architecture
This layer is built on the CORE driver layer and the Common Intermediate Application layer. From the upper side, 
it provides an entry point that handles SCSI commands. The upper IAL components are responsible for the 
adapter management, which involves initializing the adapter, SATA channels, SATA drives, handling hot-plug 
events etc. Also, several OS services are needed by this layer mainly for messages logging. These services are 
provided by the OS layer that is integrated with the CORE driver.

7.3 SAL API Summary

7.4 SAL SCSI Characteristics

7.4.1 Implementation Standards
The SAL complies with the following SCSI standards:
1. SCSI-3 Architecture Model (X3.270-199x) (SAM).
2. SCSI-3 Primary Commands (X3.301 - 199x) (SPC).
3. SCSI-3 Block Commands (ANSI NCITS 306-199X)(SBC).

7.4.2 Device Addressing
The following SCSI to ATA device addressing translation scheme holds:
� SATA channel translated to SCSI bus.

mvSataScsiInitAdapterExt() Initializes the SAL adapter data structure extension.
mvSataExecuteScsiCommand() Executes SCSI commands.
mvSataScsiPostIntService() Handles split commands.
mvSataScsiSetDriveReady() Notifies the SAL about connected/disconnected drives.
mvSataScsiNotifyUA() Notifies the SAL about Unit Attention conditions.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 83
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

� Port multiplier device port translated to SCSI target.
� SATA drive contains one lun (lun 0).

7.4.3 SCSI Features

7.4.3.1 Unit Attention Condition Reporting
The following events reported separately in the following order:

1. Bus reset occurred - Additional sense 29h and additional sense qualifier 2h.
2. Parameters changed - Additional sense 2Ah and additional sense qualifier 1h.
upon power-on or hardware reset the IAL notifies the SAL about unit attention condition, the SAL in turn report the 
first event for the first command it receives, and the second event is reported for the consecutive command 
(unless the command is INQUIRY or REQUEST SENSE, see SAM for details).

7.4.3.2 Auto-Sense 
when command completes with CHECK CONDITION status the SAL reports the sense data automatically, actu-
ally this the only mode supported for reporting sense data, the SAL doesn�t store this data for future reporting 
using the request sense command

7.4.3.3 Parameters Mode Pages
The following mode pages is supported:

1. Caching mode page - write cache enable and disable read-ahead fields supported, values types supported: 
current values, changeable and default.

2. Control mode page  - Qerr and unrestricted reordering allowed fields supported, values types supported: cur-
rent and default.

7.4.3.4 Relative Addressing
Relative addressing is not supported.

7.4.4 Supported SCSI Commands

Table 2: Supported SCSI Commands

Command SCSI Operation 
Code

READ(6) 08h

READ(10) 28h

WRITE(6) 0Ah

WRITE(10) 2Ah

INQUIRY 12h

TEST UNIT READY 00h

MODE SELECT(6) 15h

MODE SENSE(6) 1Ah
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 84 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
Internal Implementation
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

7.5 Internal Implementation

7.5.1 Command Splitting
In some cases a SCSI command is translated into several ATA commands, e.g., when a VERIFY (10) command 
with 512 sectors is received for a drive that doesn�t support the ATA command READ VERIFY SECTORS EXT, it 
is translated into READ VERIFY SECTORS. But this ATA command is limited to 256 sectors only, so the solution 
is to send two commands, each with 256 sectors. When command splitting is required, the SAL sends these ATA 
commands one by one in a serial manner, i.e., one command is sent, and when it has been completed by the 
CORE drive, the next command is sent.

7.5.2 Control Synchronization
The SAL doesn�t implement any synchronization mechanism to protect its internal data. The IAL is responsible for 
doing this. The SAL API functions are not re-entrant and must not be called simultaneously unless they are called 
for different adapters.

7.5.3 Buffer Synchronization
A typical SCSI command involves two buffers�data buffer and sense data buffer. The sense data buffer is modi-
fied by the SAL for all SCSI commands. The data buffer is also modified by the SAL for all SCSI commands 
except the READ(6), READ(10), WRITE(6), and WRITE(10) SCSI commands. For these commands, data buffers 
are always accessed by the hardware DMA. The IAL must take this into consideration when synchronizing buffers 
between the CPU�s cache and the system memory.

READ CAPACITY(10) 25h

REQUEST SENSE(6) 03h

VERIFY(6) 13h

VERIFY(10) 2fh

SYNCHRONIZE CACHE(10) 35h

SEEK(10) 2Bh

REASSIGN BLOCKS 07h

WRITE LONG(10) 3Fh

Table 2: Supported SCSI Commands (Continued)

Command SCSI Operation 
Code
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 85
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

7.6 SCSI to ATA Commands Translation Table

7.7 ATA to SCSI Error Translation
When an ATA command is completed with an ATA error, the SAL translates this error into a SCSI error by complet-
ing the SCSI command with MV_SCSI_COMPLETION_ATA_FAILED and setting ScsiStatus to CHECK condition, 
then setting the sense buffer with values according to the ATA error type. The ATA drive reports the type of error 
by setting a corresponding bit in the ATA Error register when the command is completed.

Table 3: SCSI to ATA Commands Translation

SCSI 
COMMAND

SCSI 
OPCODE

ATA COMMAND(S) NOTES

READ(6)
READ(10)

08h
28h

READ DMA or READ DMA EXT if 
the ATA drive supports lba48 
addressing feature set.

CORE drive decides which ATA READ version 
to send�FPDMA, QUEUED, or regular READ 
DMA�depending on the EDMA configuration.

WRITE(6)
WRITE(10)

0Ah
2Ah

WRITE DMA or WRITE DMA EXT if 
the ATA drive supports lba48 
addressing feature set.

CORE drive decides which ATA WRITE ver-
sion to send�FPDMA, QUEUED, or regular 
WRITE DMA�depending on the EDMA con-
figuration.

INQUIRY 12h No commands Returns information based on ATA IDENTIFY 
data cached by the SAL.

TEST UNIT 
READY

00h No commands

MODE SELECT(6) 15h ATA SET FEATURES May be split into multiple commands.

MODE SENSE(6) 1Ah IDENTIFY DEVICE

READ CAPAC-
ITY(10)

25h No commands Returns information based on ATA IDENTIFY 
data cached by the SAL.

REQUEST 
SENSE(6)

03h No commands

VERIFY(6)
VERIFY(10)

13h
3Fh

READ VERIFY SECTORS or READ 
VERIFY SECTORS EXT if the ATA 
drive supports lba48 addressing fea-
ture set.

VERIFY(10) may be split into multiple READ 
VERIFY SECTORS.

SYNCHRONIZE 
CACHE(10)

35h FLUSH CACHE

SEEK(10) 2Bh No Commands

REASSIGN 
BLOCKS

07h No Commands

WRITE LONG(10) 3Fh WRITE LONG
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 86 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
ATA to SCSI Error Translation
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Table 4: ATA to SCSI Error Translation

ATA error 
code 
Abbreviation

ATA Error 
Code Name

Bit  in the 
ATA Error 
Register

SCSI Translat ion

NM No Media 1 If the ATA command is READ VERIFY SECTORS(EXT) set the 
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) set the sense key to Unit Attention, and set 
the Additional Sense Code to 3Ah (No Media in Device).

MC Media Changed 5 If the ATA command is READ VERIFY SECTORS(EXT) set the 
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) set the sense key to Unit Attention, and set 
the Additional Sense Code to 3Ah (No Media in Device).

MCR Media Change 
Request

3 If the ATA command is READ VERIFY SECTORS(EXT) set the 
sense key to Unit Attention.

Else if the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) set the sense key to Unit Attention, and set 
the Additional Sense Code to 3Ah (No Media in Device).

ABRT Command 
Aborted

2 If the ATA command is READ VERIFY SECTORS(EXT) or SET 
FEATURES set the sense key to Aborted Command and set the 
Additional Sense Code to No Sense Code.

Else if the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) then check the IDNF. 

If IDNF is not set, then set the SCSI sense key to ILLEGAL 
REQUEST and set the Additional Sense Code to ILLEGAL 
BLOCK.

If the IDNF is also set, then set the sense key to Aborted Command 
and set the Additional Sense Core to No Sense.

IDNF Address could not 
be found

4 If the ATA command is READ VERIFY SECTORS(EXT) set the 
sense key to Aborted Command and set the Additional Sense 
Code to No Sense Code.

Else if the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) then check the ABRT.

If ABRT is not set, then set the SCSI sense key to ILLEGAL 
REQUEST and set the Additional Sense Code to ILLEGAL 
BLOCK.

If the ABRT is also set, then set the sense key to Aborted Command 
and set the Additional Sense Core to No Sense.

UNC Uncorrectable 
data

6 If the ATA command is READ VERIFY SECTORS(EXT) or READ 
DMA, set the sense key to Medium Error, set the Valid bit to 1, 
and set the Information bytes with the LBA Address in the Sense 
buffer of the relevant SCSI command. 

Else if the ATA command is Write DMA command (WRITE DMA 
[QUEUED][EXT]..), this error is called WP(Write Protect). Set 
the sense key to Data Protect and set the Additional Sense Code 
set to No Sense.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 87
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
Note

If the ATA error received doesn�t match the above-mentioned cases, set the sense key to Aborted 
Command and set the Additional Sense Code to No Sense Code.

7.8 SAL Integration
To integrate the SAL with the IAL, perform the following steps: 
1. Register the SAL�s logging module (see CORE driver logging module).
2. Allocate the MV_SAL_ADAPTER_EXTENSION structure per adapter. This structure is used by the SAL to 

hold its context information for a given adapter.
3. Call mvSataScsiInitAdapterExt() to initialize the SAL�s data structure for a given adapter.
4. Hook the function mvSataScsiPostIntService() right after calling the CORE driver 

mvSataInterruptServiceRoutine() function.
5. For each drive, the MV_SAL_ADAPTER_EXTENSION structure contains ATA information gathered from the 

ATA Identify Device Command data. Before notifying the SAL that a drive is ready, the IAL should fill in this 
information for each drive present. The data prototype for this information is defined in the Common Interme-
diate Application Layer.

6. Call mvSataScsiSetDriveReady() to notify the SAL that a given drive is available and ready to receive 
ATA commands or to notify which drive(s) are not available.

7. Call mvSataScsiNotifyUA() to notify the SAL that the SCSI Unit Attention condition is pending for a given 
drive. This function should be called after performing power-on or a hardware reset to the drive.

8. Call mvSataExecuteScsiCommand() to queue SCSI commands.

ICRC CRC error during 
transfer

6 If the ATA command is DMA command (READ/WRITE DMA 
[QUEUED][EXT]..) set the sense key to Aborted Command and 
set the Additional Sense Code to No Sense Code.

Table 4: ATA to SCSI Error Translation (Continued)

ATA error 
code 
Abbreviat ion

ATA Error 
Code Name

Bit  in the 
ATA Error 
Register

SCSI Translat ion
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 88 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
SAL API
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

7.9 SAL API

7.9.1 Enumerators
MV_SCSI_COMPLETION_TYPE - This enumerator defines the values used to describe how the SCSI command 
is completed by the SAL. For some values the SAL also sets the SCSI command status.

Table 5: Enumerators

Completion Status Description SCSI Status 

INVALID_STATUS Initial value set by SAL. Should not be returned unless unexpected error 
occurred.

N/A

SUCCESS Command completed successfully with no errors. GOOD

BAD_SCB Bad SCSI Command Block. Something is wrong with the parameters 
passed in this structure (e.g, the data length to transfer doesn�t match the 
number of sectors).

N/A

BAD_SCSI_COMMAND Bad parameter in the SCSI CDB. CHECK
CONDITION

ATA FAILED Translated ATA command completer with error. CHECK
CONDITION

QUEUE_FULL No place in the CORE drive commands queue for the translated 
command.

CHECK
CONDITION

NOT READY CORE drive not ready for queuing ATA commands. N/A

ABORTED Command was aborted by the CORE driver. N/A

OVERRUN Returned data less than the data buffer length. GOOD/CHECK 
CONDITION

UNDERRUN Returned data more than the data buffer length. GOOD/CHECK 
CONDITION

PARITY_ERROR Command failed due to parity error. CHECK
CONDITION

DISCONNECT Drive was disconnected while processing the command. N/A

NO DEVICE Targeted device not available. N/A

INVALID BUS SCSI bus ID not valid. N/A

BUS_RESET Not Used. N/A

BUSY Not Used. N/A

UA_RESET Command failed with unit attention condition due to bus reset. CHECK
CONDITION

UA_PARAMS_CHANGED Command failed with unit attention condition and parameters changed. CHECK
CONDITION
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 89
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_SCSI_COMMAND_STATUS_TYPE - Returned by mvSataExecuteScsiCommand() to describe the flow of 
the SCSI command. The values of this enumerator are:

7.9.2 Data Structures

7.9.2.1 MV_SATA_SCSI_CMD_BLOCK 
This structure contains the input/output and context information of SCS command to be processed by mvSataEx-
ecuteScsiCommand().

Description of Fields:
 IN MV_U8*       ScsiCdb - SCSI command data block buffer

 IN MV_U32       ScsiCdbLength - Length in bytes of the CDB (6,10,12,16)

 IN MV_U8        bus -  SCSI bus

 IN MV_U8        target -  Target device ID

 IN MV_U8        lun - SCSI lun number of the device

 IN MV_BOOLEAN useSingleBuffer -  True when the data located in the buffer pointed by pDataBuffer (virtual 
address). False when the command is READ/WRITE. In this case the dates located in a PRD table.

 IN MV_U8        *pDataBuffer - Pointer to the command data buffer

 IN MV_U32       dataBufferLength - Length in bytes of the command data buffer

 IN MV_U32     PRDTableEntries - Number of entries in the PRD table

 IN MV_U32       PRDTableLowPhyAddress - Low 32 bits of the PRD table physical address

 IN MV_U32       PRDTableHighPhyAddress - High 32 bits of the PRD table physical address

 OUT MV_U8       ScsiStatus - SCSI status will be written to this field

 IN MV_U8*       pSenseBuffer - Pointer to the SCSI sense buffer

 IN MV_U32       senseBufferLength - Length in bytes of the SCSI sense buffer

 OUT MV_U32      senseDataLength - Length in bytes of the generated sense data

 OUT MV_U32      dataTransfered - Length in bytes of the data transferred to the data buffer/s

 OUT MV_SCSI_COMPLETION_TYPE ScsiCommandCompletion - Translation layer status of the completed 
SCSI command callback function called by the translation layer when the SCSI completed. 

Table 6: Enumerator Values

COMMAND 
STATUS

Description

COMPLETED SCSI command was completed when it was processed by mvSataExecuteScsiCom-
mand(), and the completion callback function was called.

QUEUED Translated to ATA command(s) that are queued in the CORE driver�s commands queue.

FAILED mvSataExecuteScsiCommand() failed to handle this command due to unexpected 
error.

QUEUED_BY_IAL Not used by SAL.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 90 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
SAL API
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

 IN mvScsiCommandCompletionCallBack completionCallBack - Callback function to be invoked when the 
command is completed.

 IN struct mvSalAdapterExtension * pSalAdapterExtension - Pointer to the SAL extension of the adapter.

 IN struct mvIALCommonAdapterExtension* pIalAdapterExtension - Not used by SAL

 MV_VOID_PTR     IALData - This field is for the IAL use only.

The following are fields for internal use by the translation layer:

 MV_UDMA_TYPE            udmaType

 MV_QUEUED_COMMAND_TYPE commandType - Used for sense buffer

 MV_U32                  LowLbaAddress -  Used for non-UDMA and for sense buffer 

 MV_BOOLEAN              isExtended

 MV_U16                  splitCount
 MV_U16                  sequenceNumber - Used to create a list for commands that need post interrupt service

 struct _mvSataScsiCmdBlock  *pNext
 MV_STORAGE_DEVICE_REGISTERS ATAregStruct

7.9.2.2  MV_SATA_SCSI_CHANNEL_STATS
This structure is used for collecting statistics of the I/Os sent by the SAL. 

The fields of this structure are:

MV_U32              totalIOs
 MV_U32             totalAccumulatedOutstanding
 MV_U32             totalSectorsTransferred

7.9.2.3 MV_SATA_SCSI_DRIVE_DATA
This structure contains the information used by the SAL per SATA drive fields:

 MV_BOOLEAN      driveReady - Indicates that the drive is ready for receiving ATA commands

 ATA_IDENTIFY_INFO   identifyInfo - This structure contains information based on the IDENTIFY DATA that 
should be set by the IAL

 MV_U16_PTR          identifyBuffer - Pointer to the buffer to which to write IDENTIFY data 

 MV_SATA_SCSI_CHANNEL_STATS stats - I/Os statistics

 MV_BOOLEAN      UAConditionPending - If Unit Attention Condition is pending

 MV_U32          UAEvents - Unit Attention events to report

7.9.2.4 MV_SAL_ADAPTER_EXTENSION
This structure contains the information used by the SAL for a given adapter.

The fields of this structure are:
 MV_SATA_ADAPTER *pSataAdapter - Pointer to the CORE driver data structure 

 MV_SATA_SCSI_CMD_BLOCK  *pHead - Head of a linked list of the commands that need service when 
mvSataScsiPostIntService() is invoked
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 91
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

 MV_SATA_SCSI_DRIVE_DATA     ataDriveData 
[MV_SATA_CHANNELS_NUM][MV_SATA_PM_MAX_PORTS] -  SATA drive information for each drive

MV_U16 identifyBuffer[MV_SATA_CHANNELS_NUM][MV_ATA_IDENTIFY_DEV_DATA_LENGTH] - Data 
buffer for the IDENTIFY command. One buffer is used for each channel, so multiple devices on the same channel 
share this buffer.

7.9.3 API Functions

MV_VOID     mvSataScsiInitAdapterExt(MV_SAL_ADAPTER_EXTENSION *pAdapter-
Ext,MV_SATA_ADAPTER* pSataAdapter)

DESCRIPTION
Initializes the SAL data structure.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

pSataAdapter - Pointer to MV_SATA_ADAPTER data structure, which holds information to access the 
88SX50xx /88SX60x1 device.

MV_VOID     mvSataScsiPostIntService(MV_SAL_ADAPTER_EXTENSION *pAdapterExt)

DESCRIPTION
This function should be called after calling the CORE driver ISR. When the SCSI command is split into multi-
ple ATA commands, this function sends the next ATA command when one has been completed.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for given adapter.

MV_SCSI_COMMAND_STATUS_TYPE mvSataExecuteScsiCom-
mand(MV_SATA_SCSI_CMD_BLOCK *pMvSataScsiCmdBlock)

DESCRIPTION
This function handles execution of a given SCSI command.

INPUT
pMvSataCmdBlockAdapterExt - Pointer to SCSI COMMAND BLOCK structure, which contains the informa-
tion of the SCSI command to translate.

RETURN
MV_SCSI_COMMAND_STATUS_TYPE - How the command was processed
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 92 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



SCSI to ATA Translation Layer
SAL API
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_VOID     mvSataScsiSetDriveReady(MV_SAL_ADAPTER_EXTENSION *pAdapterExt, MV_U8   
channelIndex, MV_U8 PMPort, MV_BOOLEAN isReady)

DESCRIPTION
Informs the SAL that SATA drive(s) are ready/not ready.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

channelIndex - Channel number where the drive is connected.

PMPort - Port number where the drive is connected. When isReady is MV_FALSE a failure of FFh indicates 
that all the drives on the given channel are not ready.

isReady - If equals MV_TRUE then the drive is ready. When MV_FALSE then drive(s) are not ready.

MV_VOID mvSataScsiNotifyUA(MV_SAL_ADAPTER_EXTENSION *pAdapterExt, MV_U8    chan-
nelIndex, MV_U8 PMPort)

DESCRIPTION
Informs the SAL that SATA drives should have Unit Attention due to power-on or hardware reset.

INPUT
pAdapterExt - Pointer to SAL structure extension allocated for a given adapter.

channelIndex - Channel number where the drive is connected.

PMPort - Port number where the drive is connected.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 93
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Section 8.  IAL Common Layer

8.1 Introduction
The Common IAL component is a software package which is operating system and architecture -independent. It 
has two main functionalities�it provides the set of helper API functions to the system-dependent IAL layer and 
manages state machines of the adapter and SATA channel.

The Common IAL component API and data structures are divided into three categories:

� Common IAL implemented helper API and data structures: Includes the helper routines for the system-
dependent IAL. 

� Common IAL implemented state machine API and data structures: Includes the functions and data struc-
tures used in the adapter and channels� state machine. 

� Common IAL User-implemented API: Includes several functions and a single data structure which must be 
implemented by the user in the system-dependent IAL layer.

The Common IAL layer provides the following functionality:
� Triggers SATA adapter initialization sequence through the Core Driver API.
� Manages a state machine for the adapter and its channels to provide an asynchronous SATA adapter and 

SATA channels initialization process that is completely transparent to OS.
� Interacts with SAL to provide the representation of SATA connected equipment in SAL.
� Interacts with system-dependent IAL layer to represent the SATA adapters and SATA equipment connected 

to their channel to user application or OS SCSI subsystem.
� Notifies system-dependent IAL about changes in the status of SATA connected equipment and serves as a 

wrapper between system-dependent IAL and SAL component.
� Access to TWSI devices connected to the 88SX60X1 adapter TWSI bus. 

(Relevant only for certain revisions of 88SX60X1 adapters).

This document is divided into the following sections:
� Common IAL basic design and integration guidelines: Describes the basic design guidelines for Common 

IAL.
� Common IAL state machine for adapter and channels: Describes a Common IAL state machine for the 

adapter and its channels.
� Common IAL API Summary: Categorizes the Common IAL data structure and API being used.

8.2 Common IAL Basic Design and Integration Guidelines
The purpose of this section is to describe basic design and integration guidelines for users who integrate part or all 
of the Common IAL into their software drivers.

8.2.1 Initialization Latency and State Machines
Serial ATA devices such as disk drives and Port Multipliers may not initialize immediately. Usually Port Multipliers 
initialize faster than disk drives, since they don�t have any mechanical parts. It usually takes few seconds for a disk 
drive to initialize, until it reports about the device�s malfunctions. On other hand, operating systems such as Linux 
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 94 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Common IAL Function API and Data Structures Summary
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

and Windows require the device driver to avoid any delays longer than ~10 milliseconds, since longer delays 
affect OS system performance and smoothness, and occasionally may cause certain management processes to 
timeout.

To resolve this issue, the Common IAL component provides a mechanism of asynchronous SATA adapter and 
SATA channels initialization that is completely transparent to the OS. The initialization sequence is state-machine-
based and timer-driven, so channels initialization is done in the background and enables the other OS compo-
nents to continue running.

8.2.2 System Timer
The state machines of the adapter and channel are timer-driven, thus every adapter instance requires a single, 
periodic, low-resolution OS timer. The timer period default value must be set to 0.5 seconds, unless modified by 
the user.

When a channel state requires a longer timeout period, timer events are accumulated until the timer expiration 
threshold is reached. 

8.2.3 Common IAL Software Command Queue
The Common IAL optionally maintains a SCSI command software queue, which contains the SCSI commands 
submitted by the OS before channel initialization has been completed. 

When channel initialization has been completed, all SCSI commands in the queue are returned to the OS with 
BUSY status, which causes the OS to retry the commands.

Note

For Windows OS the command queue is not required. In this case when channel initialization sequence 
has not completed, the SCSI command is completed immediately and returned to OS with BUSY status.

8.3 Common IAL Function API and Data Structures 
Summary

The following two sub-sections summarize the CORE driver API and data structures, which are categorized in 
groups according to their functionality.
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 95
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

Figure 6: Common IAL API and Data Structures Block Diagram

System dependent  IAL
IA

L 
st

at
e 

m
ac

hi
ne

 re
la

te
d

AP
I

IA
L 

us
er

 im
pl

em
en

te
d 

AP
I

IA
L 

he
lp

er
 fu

nc
tio

ns
 A

PI

Common IAL

SAL

Core Driver

SA
L 

AP
I

C
or

e 
D

riv
er

 A
PI

Common IAL User
implemented functions

Functions

Data Structures
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 96 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Common IAL Function API and Data Structures Summary
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

8.3.1 API Summary of Common IAL Functions 

8.3.2 Common IAL Data Structure Summary
Data structures modified by IAL and CORE drive:

Common IAL helper functions
mvParseIdentifyResult Parses IDENTIFY command result.
mvGetSataDeviceType Determines SATA device type.
mvInitSataDisk Initializes SATA disk drive.
mvGetPMDeviceInfo Retrieves Port Multiplier information. 

Common IAL state-machine-related functions
mvAdapterStartInitialization Begins adapter and state machine initialization.
mvRestartChannel Restarts SATA channel.
mvStopChannel Stops SATA channel.
mvPMHotPlugDetected Notifies Common IAL about PM hot plug.
mvIALTimerCallback Common IAL system timer callback.
mvCommandCompletionErrorHandler Notifies Common IAL about command completion error.
mvExecuteScsiCommand Wrapper for SAL mvSataExecuteScsiCommand.

Common IAL user-supplied routines
IALInitChannel Allocates and initializes SATA channel data structures.
IALReleaseChannel Frees SATA channel data structure.
IALBusChangeNotify Notifies OS about changes in channel status.
IALConfigQueuingMode Configures SATA channel EDMA queuing mode.

Common IAL TWSI devices access
mvSataTWSIMasterInit Initializes 88SX60X1 TWSI master.
mvSataTWSIMasterReadByte Reads a byte from a TWSI slave connected to the 

88SX60X1 TWSI bus.
mvSataTWSIMasterWriteByte Writes a byte to a TWSI slave connected to the 88SX60X1 

TWSI bus.

MV_IAL_COMMON_CHANNEL_EXTENSION Data structure presenting Common IAL channel related 
data.

MV_IAL_COMMON_ADAPTER_EXTENSION Data structure presenting Common IAL adapter related 
data. 
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 97
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

8.4 Common IAL Internal State Diagrams
State Diagram Conventions 
Table 7 shows the general layout for each entry of the adapter and channel state diagrams described in Section 

8.4.1 and Section 8.4.2. 

8.4.1 Common IAL Adapter State Diagram

Table 7: State Table Description

State name or identif ier Explanation of the state
Branch condition 0 -> Next State 0

Branch condition 1 -> Next State 1

Branch condition 2 -> Next State 2

Branch condition 3 -> Next State 2

ADAPTER_INITIALIZING Init ial  adapter state
Staggered spin-up for SATA II 
adapter done

-> ADAPTER_READY

SATA I adapter -> ADAPTER_READY
Error: Adapter data structure not 
initialized

-> ADAPTER_FATAL_ERROR

ADAPTER_READY Working adapter state. 

When the adapter changes its state from 
ADAPTER_INITIALIZING to ADAPTER_READY, 
all channels� states are set to 
CHANNEL_DISCONNECTED and the channel 
initialization algorithm is triggered.

No branch to other states

ADAPTER_FATAL_ERROR The fatal error occurred during the adapter 
initialization.

No branch to other states
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 98 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Common IAL Internal State Diagrams
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

8.4.2 Common IAL Channel State Diagram

CHANNEL_NOT_CONNECTED Channel is not connected or channel initialization 
failed. 
The driver does not maintain SCSI command 
queue in this state.

Storage device connection detected. -> CHANNEL_CONNECTED

CHANNEL_CONNECTED Channel is connected to adapter. Start SRST for 
channel in Gen. II and set polling timer to 
31 seconds. 

1. SRST write register failed. -> CHANNEL_NOT_CONNECTED
2. Channel connected. Start SRST. 

Set timeout to 31 seconds.
-> CHANEL_IN_SRST

CHANNEL_IN_SRST Check every 0.5 seconds if the device BSY bit is 
cleared. If so, start device detection.

1. Device BSY bit is set and 31 
sec. timeout has expired.

-> CHANNEL_NOT_CONNECTED

2. Device BSY bit is set but timeout 
has not expired.

-> CHANNEL_IN_SRST

3. Device BSY bit is clear and Port 
Multiplier (PM) device detected. 
Configure PM. Proceed with PM 
staggered spin-up for all PM 
ports. 

-> CHANNEL_PM_STAGGERED_SPIN_UP

4. Device BSY bit is clear and 
SATA disk drive is detected. 
Initialize SATA disk drive.
Enable channel EDMA.

-> CHANNEL_READY

5. Any failure in 3 or 4. -> CHANNEL_NOT_CONNECTED
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 99
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l
CHANNEL_PM_STAGGERED_SPIN_UP PM device is detected on channel. Initiate 

staggered spin-up for all PM ports
1. Staggered spin-up failed. -> CHANNEL_NOT_CONNECTED
2. Staggered spin-up successfully com-

pleted. Detect PM ports on which the 
devices are present. Set index of first 
PM connected device being initialized. 
Start device SRST. Set channel timer to 
31 sec.

-> CHANNEL_PM_SRST_DEVICE

CHANNEL_PM_SRST_DEVICE PM device is detected and staggered spin-up is 
completed. The channel remains in this state until 
all devices connected to PM are initialized.

1. BSY bit is clear on PM con-
nected device (disk drive) found 
in SRST. Initialize disk drive. 
There are more devices con-
nected to PM. Start SRST on 
next device. Set channel timer to 
31 sec.

-> CHANNEL_PM_SRST_DEVICE

2. BSY bit is clear on PM con-
nected device (disk drive) found 
in SRST. Initialize disk drive. 
There are no more devices con-
nected to PM. 
Enable channel EDMA

-> CHANNEL_READY

3. Failed to communicate with PM 
device. 

-> CHANNEL_NOT_CONNECTED
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 100 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Detailed IAL Function API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

8.5 Detailed IAL Function API and Data Structures
The following sections describe the function API and data structures in detail.

8.5.1 Detailed Common IAL Data Structures

8.5.1.1 Enumerators and Defines
MV_ADAPTER_STATE: Adapter state enumerator for either ADAPTER_INITIALIZING, ADAPTER_READY, or 
ADAPTER_FATAL_ERROR

MV_CHANNEL_STATE: Channel state enumerator for either CHANNEL_NOT_CONNECTED, 
CHANNEL_CONNECTED, CHANNEL_IN_SRST, CHANNEL_PM_STAGGERED_SPIN_UP, 
CHANNEL_PM_SRST_DEVICE, CHANNEL_READY, or CHANNEL_PM_HOT_PLUG.

MV_IAL_ASYNC_TIMER_PERIOD: Timer period define in milliseconds (equals to 500).

CHANNEL_READY Channel and all attached devices are 
initialized. Flush SCSI command queue for 
this channel if one is being maintained. All 
commands are returned with BUSY status 
and OS resubmits them later. 
If the channel has a PM connected to it and asyn-
chronous notification is not supported by PM, start 
polling the PM Error information GSCR[33] regis-
ter every 0.5 sec.

1. Channel disconnect 
detected.

-> CHANNEL_NOT_CONNECTED

2. PM hot plug is detected, either 
by polling or by receiving the 
event from Core Driver.

-> CHANNEL_PM_HOT_PLUG

CHANNEL_PM_HOT_PLUG The channel remains in this state until the chan-
nel�s EDMA command queue on this channel is 
empty. 

If the queue is empty, restart the channel by set-
ting its state to CHANNEL_CONNECTED. The 
channel is being restarted.

1. EDMA command queue is not 
empty.

-> CHANNEL_PM_HOT_PLUG

2. EDMA command queue is 
empty.

-> CHANNEL_CONNECTED
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 101
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_IAL_SRST_TIMEOUT: Software reset timeout expiration value in milliseconds (equals to 31000).

8.5.1.2 Data Structures

MV_IAL_COMMON_CHANNEL_EXTENSION
MV_U8 PMnumberOfPorts

Number of ports in Port Multiplier if one is connected to current channel.

MV_U16 PMdevsToInit 
Bit mask to enumerate the Port Multiplier connected devices that need further initialization: Bit value of 1 
means that a device needs to be initialized.

MV_U8 devInSRST 
Indicates a Port Multiplier connected device on which the software reset is in progress.

MV_BOOLEAN completionError
Indicates that SCSI command completion error has occurred on current channel. When the Port Multiplier is 
connected to the channel, completionError is equal to MV_TRUE and asynchronous notification is not sup-
ported by the Port Multiplier. The driver checks the change in status of Port Multiplier connected devices 
before submitting the next SCSI command.

MV_U8 pmAccessType
Used for Port Multiplier polling mechanism. Indicates the access type to the Port Multiplier registers: Equals 
either MV_ATA_COMMAND_PM_READ_REG or MV_ATA_COMMAND_PM_WRITE_REG.

MV_U8 pmReg
Used for Port Multiplier polling mechanism. Stores the Port Multiplier register number to access.

MV_BOOLEAN pmRegAccessInProgress
Indicates that a Port Multiplier register access is pending. This is used to prevent the polling routine from re-
entering the register access. Equal to MV_TRUE if the register access is in progress.

MV_BOOLEAN pmAsyncNotifyEnabled
Indicates that a asynchronous notification is supported by the Port Multiplier connected to this channel.

MV_U32 SRSTTimerThreshold
Stores the timer expiration value of the software reset timer.

MV_U32 SRSTTimerValue
Stores the current timer value of the software reset timer.

MV_VOID_PTR IALChannelPendingCmdQueue
Head of the command queue managed by the Common IAL.

MV_IAL_COMMON_ADAPTER_EXTENSION
MV_SATA_ADAPTER   *pSataAdapter

Pointer to the Core Driver adapter data structure.

MV_ADAPTER_STATE adapterState
Current state of the adapter.

MV_CHANNEL_STATE channelState[MV_SATA_CHANNELS_NUM]
Current state of adapter�s channels.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 102 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Detailed IAL Function API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_IAL_COMMON_CHANNEL_EXTENSION IALChannelExt[MV_SATA_CHANNELS_NUM]
Channels� extension of Common IAL.

8.5.2 Common IAL API

8.5.2.1 Common IAL Helper Functions

MV_BOOLEAN mvParseIdentifyResult (MV_U16_PTR iden,ATA_IDENTIFY_INFO *pIdentifyInfo)

DESCRIPTION
Parses the identify command results, checks that the connected devices can be accessed by the device 
EDMA, and updates the ATA drive parameters structure accordingly.

INPUT
iden - pointer to the buffer returned by the ATA IDENTIFY command

pIdentifyInfo- pointer to the ATA parameters structure

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_SATA_DEVICE_TYPE mvGetSataDeviceType (MV_STORAGE_DEVICE_REGISTERS 
*mvRegs)

DESCRIPTION
Determines the SATA device type according to the values of ATA registers.

INPUT
mvRegs - ATA registers structure

RETURN 
MV_SATA_DEVICE_TYPE_UNKNOWN - unknown device type

MV_SATA_DEVICE_TYPE_ATA_DISK - ATA disk drive

MV_SATA_DEVICE_TYPE_ATAPI_DISK - ATAPI disk drive

MV_SATA_DEVICE_TYPE_PM - Port Multiplier

MV_BOOLEAN mvInitSataDisk(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelIndex,
MV_U8 PMPort, ATA_IDENTIFY_INFO   *pIdentifyInfo,   MV_U16_PTR identifyBuffer)

DESCRIPTION
Retrieves drive information using ATA IDENTIFY command and initialized disk drive using SET FEATURES 
ATA command. 

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelIndex - index of the current channel

PMPort - Port Multiplier port number
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 103
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

OUTPUT
pIdentifyInfo - pointer to IDENTIFY information structure

identifyBuffer - pointer to IDENTIFY buffer

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvGetPMDeviceInfo(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelIn-
dex, MV_SATA_PM_DEVICE_INFO *pPMDeviceInfo)

DESCRIPTION
Retrieves Port Multiplier information such as vendor ID, device ID, product revision, specification revision and 
number of ports.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelIndex - index of the current channel

OUTPUT
pPMDeviceInfo - pointer to Port Multiplier information structure

RETURN 
MV_TRUE on success

MV_FALSE on failure

8.5.2.2 Common IAL API State-Machine-Related Functions

MV_BOOLEAN mvAdapterStartInitialization(MV_SATA_ADAPTER *pSataAdapter,
MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,                                   
MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
Adapter found in ADAPTER_INITIALIZING state. Starts adapter initialization: State-machine-related data 
structures are initialized for the adapter and its channels. After successful staggered spin-up operation the 
adapter state is changed to ADAPTER_READY.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

ialExt - Common IAL adapter data structure allocated by system-dependent IAL

scsiAdapterExt - pointer to SAL extension

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 104 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Detailed IAL Function API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

void mvRestartChanne(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,   MV_U8 channelIn-
dex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt, MV_BOOLEAN bBusReset)

DESCRIPTION
Restarts the initialization sequence for current channel. The channel state is changed to 
CHANNEL_CONNECTED, the OS is notified about the change in the bus and the channel initialization is 
started.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelIndex - channel number

scsiAdapterExt - pointer to SAL extension

bBusReset - Equals MV_TRUE if the function was called upon bus reset.

RETURN 
None

void mvStopChanne(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,   MV_U8 channelIn-
dex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
Stops current channel. Channel state is changed to CHANNEL_NOT_CONNECTED and the OS is notified 
about the change in the bus. All channel data structures are released.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelIndex - channel number

scsiAdapterExt - pointer to SAL extension

RETURN 
None

void mvPMHotPlugDetected(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,   MV_U8 chan-
nelIndex, MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
Called when Port Multiplier device hot plug is detected. If the channel has no outstanding EDMA commands, 
the channel state is changed to CHANNEL_PM_HOT_PLUG. Otherwise, the channel is restarted.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelIndex - channel number

scsiAdapterExt - pointer to SAL extension

RETURN 
None
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 105
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvIALTimerCallback(MV_IAL_COMMON_ADAPTER_EXTENSION *ialExt,   
MV_SAL_ADAPTER_EXTENSION *scsiAdapterExt)

DESCRIPTION
The system-dependent IAL must call this function from its timer callback routine. The functions of the adapter 
and channels� state machine are executed in every call of this function.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

scsiAdapterExt - pointer to SAL extension

RETURN 
MV_TRUE on success

MV_FALSE on failure

void mvCommandCompletionErrorHandler(MV_IAL_COMMON_ADAPTER_EXTENSION *ial-
Ext,   MV_U8 channelIndex)

DESCRIPTION
Called either by the SAL completion or the SMART completion function. Checks whether command failed 
because of PM hot plug.

INPUT
ialExt - Common IAL adapter data structure allocated by system-dependent IAL

channelIndex - channel number

RETURN 
None

MV_SCSI_COMMAND_STATUS_TYPE mvExecuteScsiCommand(
MV_SATA_SCSI_CMD_BLOCK *pScb,   MV_BOOLEAN canQueue)

DESCRIPTION
IAL common layer wrapper of Core Driver mvSataExecuteScsiCommand() function. If the adapter state is not 
ADAPTER_READY or the channel is connected but the channel state is not CHANNEL_READY, the current 
SCSI command can be either queued in the channel's SCSI commands software queue until the channel ini-
tialization sequence is completed or immediately returned to the OS with adapter BUSY status.   If the chan-
nel is in CHANNEL_READY state the SCSI command is passed to the SAL layer.

INPUT
pScb - SCSI command block structure

canQueue - determines if the IAL can queue this command

RETURN 
Return MV_SCSI_COMMAND_STATUS_COMPLETED if the command has been returned to the OS.

Return MV_SCSI_COMMAND_STATUS_QUEUED_BY_IAL if the command has been queued to the chan-
nel software queue. 

Otherwise return the result of mvSataExecuteScsiCommand() function call.
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 106 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Detailed IAL Function API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

8.5.3 Common IAL API User-Supplied Routines 
The system-dependent IAL layer must supply the following functions to the Common IAL:

MV_BOOLEAN IALInitChannel(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelIndex)

DESCRIPTION
Allocate and initialize all system-dependent IAL channel data structures.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelIndex - channel number

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN IALReleaseChannel(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelIndex)

DESCRIPTION
Release all system-dependent IAL channel data structures.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelIndex - channel number

RETURN 
None

MV_BOOLEAN IALBusChangeNotify(MV_SATA_ADAPTER *pSataAdapter, MV_U8 channelIn-
dex)

DESCRIPTION
Notify the OS about the change in the status of the current channel.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

channelIndex - channel number

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN IALConfigQueuingMode(MV_SATA_ADAPTER *pSataAdapter, MV_U8 chan-
nelIndex, MV_EDMA_MODE mode, MV_U8 queueDepth)

DESCRIPTION
Performs all system-dependent IAL operations for queuing mode. Then it must call 
mvSataConfigEdmaMode().

INPUT
pSataAdapter - pointer to Core Driver adapter data structure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 107
Not approved by Document Control.  For review only.



Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

channelIndex - channel number

mode - EDMA mode to configure for the channel. Can be either MV_EDMA_MODE_QUEUED, 
MV_EDMA_MODE_NOT_QUEUED or MV_EDMA_MODE_NATIVE_QUEUING

queueDepth - maximum number of outstanding EDMA commands in queue

RETURN 
MV_TRUE on success
MV_FALSE on failure

8.5.4 Common IAL TWSI Devices Access
The following functions enable access to TWSI devices attached to the 88SX60X1 TWSI bus.

MV_BOOLEAN mvSataTWSIMasterInit(MV_SATA_ADAPTER *pSataAdapter)

DESCRIPTION
Initializes 88SX60X1 adapter�s TWSI bus.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

RETURN 
MV_TRUE on success

MV_FALSE on failure

MV_BOOLEAN mvSataTWSIMasterReadByte(MV_SATA_ADAPTER *pSataAdapter, MV_U8 
twsiDevAddr, MV_U16 address, MV_U8_PTR data, MV_BOOLEAN addressRange)

DESCRIPTION
Reads a byte from TWSI device.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

twsiDevAddr - Address of the slave device in the TWSI address space

address - The required address within the TWSI device (can be either 8-bit or 16-bit)

data - A pointer to an 8-bit data container that holds the data of the result

addressRange - If MV_TRUE then the TWSI device must be accessed by 16-bit addressing.
If MV_FALSE then the device is accessed by 8-bit addressing (only the 8 LSB bits of the above address 
parameter are valid).

RETURN 
MV_TRUE on success

MV_FALSE on failure
Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 108 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.



IAL Common Layer
Detailed IAL Function API and Data Structures
Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

MV_BOOLEAN mvSataTWSIMasterWriteByte(MV_SATA_ADAPTER *pSataAdapter, MV_U8 
twsiDevAddr, MV_U16 address, MV_U8 data, MV_BOOLEAN addressRange)

DESCRIPTION
Writes a byte to a TWSI device.

INPUT
pSataAdapter - pointer to Core Driver adapter data structure

twsiDevAddr - Address of the slave device in the TWSI address space

address - The required address within the TWSI device (can be either 8-bit or 16-bit)

data - The data to be written

addressRange - If MV_TRUE then the TWSI device must be accessed in 16-bit addressing.

If MV_FALSE then the device is accessed by 8-bit addressing (only the 8 LSB bits of the above address 
parameter above are valid).

RETURN 
MV_TRUE on success

MV_FALSE on failure
Copyright © 2004 Marvell CONFIDENTIAL Doc. No. MV-S800188-00 Rev. 0.9

January 29, 2004, Preliminary Document Classification: Proprietary Information Page 109
Not approved by Document Control.  For review only.



Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l 

Serial ATA Software Driver User Manual for the 88SX50xx and 88SX60x1 

Doc. No. MV-S800188-00 Rev. 0.9    CONFIDENTIAL  Copyright © 2004 Marvell

Page 110 Document Classification: Proprietary Information January 29, 2004, Preliminary
Not approved by Document Control.  For review only.

Section 9.  Revision History

Table 8: Revision History

Document Type Software 
Version # 

Document 
Revision

Date

 Pre-release draft  Version 3.2.0 Revision 0.9  



Pre
-re

lea
se

 D
ra

ft

Not A
ppro

ve
d b

y D
ocu

m
en

t C
ontro

l

This page is intentionally left blank.



US and Worldwide Offices
Marvell Semiconductor, Inc. 
700 First Avenue 
Sunnyvale, CA 94089
Tel: 1.408.222.2500
Fax: 1.408.752.9028

Marvell Asia Pte, Ltd.
151 Lorong Chuan, #02-05
New Tech Park
Singapore 556741
Tel: 65.6756.1600
Fax: 65.6756.7600

Marvell Japan K.K.
Shinjuku Center Bldg. 50F
1-25-1, Nishi-Shinjuku, Shinjuku-ku
Tokyo 163-0650
Tel: 81.(0).3.5324.0355
Fax: 81.(0).3.5324.0354

Marvell Semiconductor Israel, Ltd.
Moshav Manof
D.N. Misgav 20184
Israel
Tel: 972.4.995.1000
Fax: 972.4.995.1001

Worldwide Sales Offices
Western US Sales Office
Marvell 
700 First Avenue
Sunnyvale, CA 94089
Tel: 1.408.222.2500
Fax: 1.408.752.9028
Sales Fax: 1.408.752.9029

Central US Sales Office 
Marvell 
11709 Boulder Lane, Ste. #220 
Austin, TX 78726 
Tel: 1.512.336.1551 
Fax: 1.512.336.1552 

Eastern US/Canada Sales Office 
Marvell
Parlee Office Park
1 Meeting House Road, Suite 1
Chelmsford, MA 01824
Tel: 978 250-0588
Fax: 978 250-0589

Europe Sales Offices 
Marvell 
3 Clifton Court 
Corner Hall 
Hemel Hempstead 
Hertfordshire, HP3 9XY 
United Kingdom 
Tel: 44.(0).1442.211668 
Fax: 44.(0).1442.211543 

Marvell
Fagerstagatan 4
163 08 Spanga
Stockholm, Sweden
Tel: 46.16.146348
Fax: 46.16.482425

Marvell
5 Rue Poincare
56400 Le Bono
France
Tel: 33.297.579697
Fax: 33.297.578933

Israel Sales Office 
Marvell 
Ofek Center Bldg. 2, Floor 2 
Northern Industrial Zone
LOD 71293 
Israel 
Tel: 972.8.914.1300 
Fax: 972.8.914.1301 

China Sales Office 
Marvell 
5J, 1800 Zhong Shan West Road
Shanghai, China 200233 
Tel: 86.21.6440.1350 
Fax: 86.21.6440.0799 

Taiwan Sales Office 
Marvell 
2Fl., No. 1, Alley 20, Lane 407
Ti-Ding Blvd., Nei Hu District
Taipei, Taiwan 114, R. O. C
Tel: (886-2).7720.5700
FAX: (886-2).7720.5707

Copyright ©  2004 Marvell. All rights reserved.  Marvell, the Marvell logo, Moving Forward Faster, Alaska, and GalNet are registered trademarks of Marvell.
Discovery, Fastwriter, GalTis, Horizon, Libertas, Link Street, NetGX, PHY Advantage, Prestera, Raise The Technology Bar, UniMAC, Virtual Cable Tester,
and Yukon are trademarks of Marvell.  All other trademarks are the property of their respective owners.

Marvell Semiconductor, Inc.

700 First Avenue
Sunnyvale, CA 94089

Phone 408.222.2500
Fax 408.752.9028

www.marvell.com

For more information, visit our website at: www.marvell.com


	Title Page
	Section 1. Architectural Specification
	1.1 Introduction
	1.1.1 Relevant Devices
	1.1.2 Relevant Documents

	1.2 CORE Driver
	1.3 System-Dependent Header File (mvOs.h)
	1.4 SCSI to ATA Translation Layer (SAL)
	1.5 Common Intermediate Application Layer Tasks (Common IAL)
	1.6 Intermediate Application Layer (IAL)
	1.7 Application Layers

	Section 2. System Integration
	2.1 Introduction
	2.2 System Integration Using Only CORE Driver
	2.2.1 System-Dependent Header File (mvOs.h)
	2.2.2 Hardware Detection, Adapter, and CORE Driver Initialization
	2.2.3 Storage Devices Detection and Initialization
	2.2.3.1 Storage Device Discovery Algorithm
	2.2.3.2 Initialization of the Port Multiplier
	2.2.3.3 Initialization of Hard Drive Algorithm
	2.2.3.4 Configuring EDMA Mode

	2.2.4 Command Queuing, Execution and Completion
	2.2.4.1 Command Queuing and Execution
	2.2.4.2 Command Completion
	Interrupt Driven Driver and Command Completion in ISR
	Interrupt Driven Driver and Command Completion Deferred in Task
	Polling Driven Command Completion


	2.2.5 Error Handling
	2.2.5.1 PCI Bus Error
	2.2.5.2 SATA Bus Error
	2.2.5.3 Hard Drive Errors
	2.2.5.4 Command Timeout
	2.2.5.5 Software Errors


	2.3 System Integration Using CORE Driver, SCSI to ATA Translation Layer, and Common IAL Layers
	2.3.1 System-Dependent Header File (mvOs.h)
	2.3.2 Hardware Detection; Initialization of Adapter, CORE, SAL, and Common IAL Drivers
	2.3.3 Command Queuing, Execution, and Completion
	2.3.3.1 Command Queuing and Execution
	2.3.3.2 Command Completion

	2.3.4 Error Handling
	2.3.4.1 PCI Bus Error
	2.3.4.2 SATA Bus Error or Hard Drives Errors
	2.3.4.3 Command Timeout
	2.3.4.4 Software Errors


	2.4 System Integration by Example
	2.4.1 Hardware Detection
	2.4.2 Hardware Initialization
	2.4.3 Storage Devices Initialization
	2.4.4 Command Queuing and Execution
	2.4.5 Interrupt Servicing and Command Completion
	2.4.6 Bus Reset Upon Timeout

	2.5 Miscellaneous Issues
	2.5.1 Hotplug on SATA Channels
	2.5.2 Logger Module for Debug Messages Logging
	2.5.3 Channel-to-Channel Communication (aka Target Mode)
	2.5.3.1 Channel-to-Channel Communication: Initialization
	2.5.3.2 Channel-to-Channel Communication: Sending a Message
	2.5.3.3 Channel-to-Channel Communication: Transferring Blocks
	2.5.3.4 Channel-to-Channel Communication: Error Handling
	Message Error Handling
	Block Transfer Error Handling


	2.5.4 I/O-Granularity
	Interrupt Coalescing in I/O Granularity Design Highlights
	2.5.4.1 Enabling I/O-Granularity CORE Driver Support
	2.5.4.2 I/O-Granularity Command Queuing
	2.5.4.3 I/O-Granularity Command Completion
	2.5.4.4 I/O-Granularity Error Handling

	2.5.5 Restrictions when Using the CORE Driver API


	Section 3. Linux Intermediate Application Layer
	3.1 Introduction
	3.1.1 Linux IAL SCSI Host Template Driver
	3.1.2 Linux IAL Extension Library

	3.2 Linux IAL SMART (Self-Monitoring, Analysis, and Reporting Technology) Support
	3.3 Building and Running the Project
	3.3.1 Requirements
	3.3.2 Building and Running the Project
	3.3.2.1 Building the Project for Linux RedHat
	3.3.2.2 System Monitoring and Driver/proc Extension
	3.3.2.3 Reading from the /proc Extension files
	3.3.2.4 Writing to the /proc Extension Files

	3.3.3 Hot-Swapping Storage Devices
	3.3.3.1 Adding a Storage Device
	3.3.3.2 Removing a Storage Device


	3.4 Linux IAL SCSI Host Template Driver API
	3.5 Linux IAL Extension Library

	Section 4. Windows Intermediate Application Layer
	4.1 Introduction
	4.1.1 Windows IAL SCSI Miniport Driver Functionality

	4.2 Building and Installation
	4.2.1 Requirements
	4.2.2 Building
	4.2.3 Installation of the Driver into a Running System
	4.2.4 Installing Windows 2000/XP/2003 on a 88SX50XX-60X1 Adapter
	4.2.5 Using Windows 2000/XP/2003 SCSI Parameters
	4.2.6 Hot-Swapping Storage Devices


	Section 5. Bios Extension Driver Intermediate Application Layer
	5.1 Introduction
	5.1.1 BIOS Extension Driver Functionality

	5.2 Building and Installation
	5.2.1 Requirements
	5.2.2 Building
	5.2.3 Installation of the BIOS Extension Driver
	5.2.4 Un-installation of the BIOS Extension Driver


	Section 6. Core Driver
	6.1 Introduction
	6.2 CORE Driver API and Data Structures Summary
	6.2.1 CORE Driver API Summary
	6.2.2 CORE Driver Data Structure Summary

	6.3 Compile-Time CORE Driver Configuration
	6.3.1 CORE Driver Logging Mechanism
	6.3.2 CORE Driver Queue Size
	6.3.3 Channel-to-Channel Communication Support (aka Target Mode)
	6.3.4 I/O-Granularity Interrupt Acceleration

	6.4 CORE Driver API User Implementation Requirements and Restrictions
	6.4.1 Requirements
	6.4.1.1 Command Completion and Event Notification
	6.4.1.2 System Functions
	6.4.1.3 Data Types


	6.5 Detailed CORE Driver Implemented API and Data Structures
	6.5.1 Enumerators and Defines
	6.5.1.1 Enumerators
	6.5.1.2 Defines
	Logger Defines
	Log Levels Filter Mask
	Log Message Type


	6.5.2 Data Structures
	MV_SATA_ADAPTER
	MV_SATA_CHANNEL
	MV_QUEUE_COMMAND_INFO
	MV_UDMA_COMMAND_PARAMS
	MV_NONE_UDMA_COMMAND_PARAMS
	MV_STORAGE_DEVICE_REGISTERS
	MV_SATA_EDMA_PRD_ENTRY

	6.5.3 CORE Driver API
	6.5.3.1 CORE Driver Adapter Management
	6.5.3.2 CORE Driver SATA Channel Management
	6.5.3.3 Execute Synchronous Non-UDMA ATA Commands (Polling Driven)
	6.5.3.4 Port Multiplier Functions (Polling Driven)
	6.5.3.5 Queuing Asynchronous ATA Commands

	6.5.4 Interrupt Service Routine

	6.6 System-Dependent Header File (mvOs.h)
	6.6.1 Types and Defines
	6.6.1.1 Data Types (User-Implemented)
	6.6.1.2 Defines (User-Implemented)

	6.6.2 Data Structures
	6.6.2.1 MV_OS_SEMAPHORE (User-Implemented)
	6.6.2.2 Command Completion and Event Notification (User-Implemented)
	6.6.2.3 System Routines (User-implemented)
	6.6.2.4 Logger API
	6.6.2.5 Interrupt Coalescing in I/O Granularity API
	6.6.2.6 Channel-to-Channel Communication Mode Functions



	Section 7. SCSI to ATA Translation Layer
	7.1 Introduction
	7.2 Architecture
	7.3 SAL API Summary
	7.4 SAL SCSI Characteristics
	7.4.1 Implementation Standards
	7.4.2 Device Addressing
	7.4.3 SCSI Features
	7.4.3.1 Unit Attention Condition Reporting
	7.4.3.2 Auto-Sense
	7.4.3.3 Parameters Mode Pages
	7.4.3.4 Relative Addressing

	7.4.4 Supported SCSI Commands

	7.5 Internal Implementation
	7.5.1 Command Splitting
	7.5.2 Control Synchronization
	7.5.3 Buffer Synchronization

	7.6 SCSI to ATA Commands Translation Table
	7.7 ATA to SCSI Error Translation
	7.8 SAL Integration
	7.9 SAL API
	7.9.1 Enumerators
	7.9.2 Data Structures
	7.9.2.1 MV_SATA_SCSI_CMD_BLOCK
	Description of Fields:

	7.9.2.2 MV_SATA_SCSI_CHANNEL_STATS
	7.9.2.3 MV_SATA_SCSI_DRIVE_DATA
	7.9.2.4 MV_SAL_ADAPTER_EXTENSION

	7.9.3 API Functions


	Section 8. IAL Common Layer
	8.1 Introduction
	8.2 Common IAL Basic Design and Integration Guidelines
	8.2.1 Initialization Latency and State Machines
	8.2.2 System Timer
	8.2.3 Common IAL Software Command Queue

	8.3 Common IAL Function API and Data Structures Summary
	8.3.1 API Summary of Common IAL Functions
	8.3.2 Common IAL Data Structure Summary

	8.4 Common IAL Internal State Diagrams
	State Diagram Conventions
	8.4.1 Common IAL Adapter State Diagram
	8.4.2 Common IAL Channel State Diagram

	8.5 Detailed IAL Function API and Data Structures
	8.5.1 Detailed Common IAL Data Structures
	8.5.1.1 Enumerators and Defines
	8.5.1.2 Data Structures
	MV_IAL_COMMON_CHANNEL_EXTENSION
	MV_IAL_COMMON_ADAPTER_EXTENSION


	8.5.2 Common IAL API
	8.5.2.1 Common IAL Helper Functions
	8.5.2.2 Common IAL API State-Machine-Related Functions

	8.5.3 Common IAL API User-Supplied Routines
	8.5.4 Common IAL TWSI Devices Access


	Section 9. Revision History

